1) filtering in fractional fourier domain
分数阶傅立叶域滤波
2) Fractional Fourier Domain Filtering
分数傅立叶域滤波
1.
Fractional Fourier Domain Filtering Applied to Improve Image Quality in Photolithography;
但目前尚未见分数傅立叶域滤波应用于改善光学光刻。
3) Fractional Fourier domain filters
分数傅里叶域滤波片
4) Fourier filtering
傅立叶滤波
1.
Using Fourier filtering and derivative to process the reflectance spectroscopy of wheat under different irrigational conditions.
应用傅立叶滤波和导数法等信号处理技术对获得的不同灌溉条件小麦冠层的反射光谱进行处理,选出最能有效区分小麦不同灌溉条件的波长,用这些波长对应的反射率为指标,用模糊聚类(FCA)方法对不同灌溉条件的小麦进行区分。
2.
Measure canopies reflectance spectroscopy of wheat,using Fourier filtering and derivative to select wavelengths which can distinguish different developmental periods of wheat.
测量不同生育阶段小麦冠层反射光谱,并使用傅立叶滤波及导数法信号处理技术对反射光谱进行处理,找出能最有效区分作物不同生育阶段的波长和波段,用这些波长和波段对应的反射率为指标,用模糊聚类(FCA)的方法对不同生育阶段小麦进行区分。
6) FrFT
分数阶傅立叶变换
1.
Analysis of an Improved Algorithm of Interference Suppressing to LFM Based on FRFT
分数阶傅立叶变换的线性调频干扰抑制的改进算法
2.
Based on the two approaches,including time delay correlation dechirp method and FrFT scan method, which are discussed in detail,a novel method is presented,which simplifies the LFM signal detection to one-dimension searching in limited range.
在分析和比较了时延相关解线调法和分数阶傅立叶变换(FrFT)扫描法的基础上,提出了一种新方法,该方法将LFM信号的检测问题简化为小范围的一维搜索问题,从而有效的减小运算量和分离强弱信号,同时在低SNR情况下的参数估计性能接近CRLB(Cramer-Rao low bounds)。
3.
Based on the Fractional Fourier Transform(FrFT),an algorithm,which separates and estimates parameters on the sub-sampled LFM signals,is given.
该方法先由延迟相乘和牛顿迭代算法估计信号的调频斜率,然后在分数阶傅立叶变换域进行滤波,实现信号分离。
补充资料:傅里叶级数与傅里叶积分
傅里叶级数与傅里叶积分
Fourier series and integrals
傅里叶级数与傅里叶积分(F ourierse-ries and integrals) 傅里叶级数与傅里叶积分是研究周期现象的数学工具,它在波(例如光波和声波)的运动、振动力学系统(例如振动的弦)和天体轨道理论中是必不可少的。傅里叶级数及下面将要讨论的有关论题,在其他数学分支中有着重要的应用,其中特别值得提出的是概率论和偏微分方程。这个课题本身所促成的一些学科在纯数学的研究中也占有突出的位置。 单实变量函数f有周斯T,如果对每个t,有f(t+T)一f(t)。具有给定周期T的函数的最简单例子是简谐函数,即形如f(t)=aneosn叫+占。sin明的函数,其中。2二T一’是基频,a。,b。是常数。傅里叶级数的应用,其基本思想是:任意满足相当宽的条件且周期为T的函数f能够表为如下式所示的一些纯简谐函数的叠加: f(‘)一艺(a。eosn。:+。。sinn。‘),(1)或者利用复指数表为如f(‘)一艺c。e一(2)所示更为方便的形式。 假定式(2)逐项积分是合法的,则通过简单的计算表明,式‘一T一‘}f(t)。一‘”“dt(3)(积分区间可以是长为T的任意区间)成立。由此可诱导出傅里叶级数的正式定义。假设f是使得积分睽一f(‘’1“‘(4)存在且为有限的周期T的函数,由式(3)定义的系数{‘)是f的傅里叶系数,而式(2)中的级数是f的傅里叶级数。这些系数唯一地确定函数.即若对每一n有‘二一。,则f本质上是零函数。此外,还可以证明,许多对于函数的形式运算,施加到级数逐项进行仍是正确的。由此立即引出两个重要的问题。设s、(,)一名e,了一(5)是f的傅里叶级数的第N个部分和,第一个问题是当N趋于co时:斌t)是否收敛于f(t)?第二个问题是给定了一个序列(c。},它是否为某一函数的傅里叶系数序列? 一个连续函数的傅里叶级数不一定处处收敛。如果t0是一给定点,sN(t。)趋于f(t。)的收敛性依赖于f(t)在t。的邻域内关于t的性态。然而,如果我们取平均的部分和a、一(N+1)一,习s,,(6)则对于连续的f,将一致地有如“f。仅仅知道傅里叶级数的普通收敛性,在应用上并不重要。由于计算上的目的.必须知道一些有关收敛速度的知识。下面的论述这个问题的定理的例子:假设}df/dt}(M处处成立,则有},(,)一(‘),、六M(N+1)一。 黎曼一勒贝格引理断言,若{c。}是一个可积函数的傅里叶系数序列,则当n~士二~时伽~。。但逆命题不真,即并非系数趋于零的所有三角级数艺二‘““(7)都是傅里叶级数。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条