1) homogenization stability
均质稳定性
2) Uniformity and stability
均质稳定
3) mean square stability
均方稳定性
1.
In order to research the stability of stochastic differential equations,the two-step Runge-Kutta methods for solving these equations are presented, and the mean square stability and exponential stability conditions of the methods are discussed.
为进一步研究随机微分方程的稳定性,给出了随机微分方程的二级Runge-Kutta方法的算法格式,研究了二级显式随机Runge-Kutta方法的均方稳定和指数稳定的条件,并证明了对于线性检验方程,均方稳定性和指数稳定性的关系。
2.
Based on the two types of test equations of stochastic differential equations, additive noise and multiplicative noise, the stability of Milstein numerical scheme for autonomous scalar stochastic differential equations such as the mean square stability, A stability and T stability was studied.
基于随机微分方程的两类试验方程 ,即噪声为增加噪声和附加噪声的两种情况 ,讨论了求解标量自治随机微分方程的Milstein数值方法的三种稳定性 :A 稳定性、均方稳定性和T 稳定性 。
3.
In this paper,we study the mean square stability of stochastic system.
本文研究随机系统的均方稳定性,首先给出了该系统均方稳定性的一个充分必要条件,另外通过构造反例指出了文献[3] 中的一个错误认识。
4) stationary stability
平均稳定性
1.
We define the stability of stochastic differential equations with Markovian switching by means of KRW met-rics,furthermore,investigate the stationary stability through coupling method
用KRW距离定义马尔可夫调制随机微分方程的稳定性,进而用Markov耦合研究平均稳定
5) mean-square stability
均方稳定性
1.
In this paper, mean-square stability and feedback stabilization of delay stochastic systems of Ito type are investigated.
本文研究Ito型随机滞后系统的均方稳定性与反馈镇定。
6) stability in mean square
均方稳定性
1.
In this paper, we discuss various stability in mean square of large-scaledynamical systems described by stochastic differential equations of neutral-type,using the method of lumped iteration.
随机中立型大系统的稳定性廖晓昕,毛学荣(华中理工大学数学系)(Strathclyde大学统计与模型科学系)关键词中立型随机微分方程;均方稳定性;大系统中国分类号O211。
补充资料:连续性与非连续性(见间断性与不间断性)
连续性与非连续性(见间断性与不间断性)
continuity and discontinuity
11an父ux泊g四f“山。麻以角g、.连续性与非连续性(c。nt,n琳t:nuity一)_见间断性与不间断性。and diseo红ti-
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条