1) no-linear geometrical transform
非线性几何校正
2) Nonlinear Positioning Geometry Rectifying
非线性位置几何校正
3) geometrical nonlinearity
几何非线性
1.
Optimum design of single-layer lattice shells considering the effect of geometrical nonlinearity;
考虑几何非线性影响的单层网壳优化设计
2.
Analysis of hysteretic behavior of Pall-typed frictional dampers considering geometrical nonlinearity and corresponding test verification;
基于几何非线性的Pall型摩擦阻尼器滞回特性分析与试验验证
3.
Analysis for geometrical nonlinearity with Element-free Galerkin Method;
几何非线性分析的无网格伽辽金算法
4) geometric nonlinearity
几何非线性
1.
Construction mechanics analytical procedures for steel structures in view of the geometric nonlinearity;
考虑几何非线性钢结构施工力学分析方法
2.
Finite strip method of reinforced concrete slabs and shells including geometric nonlinearity;
考虑几何非线性钢筋混凝土板壳的有限条法
3.
Seismic response analysis of single face cable stayed bridge with geometric nonlinearity;
单索面斜拉桥考虑几何非线性地震反应分析
5) geometric nonlinear
几何非线性
1.
Generalized displacement control method for geometric nonlinear analysis of structures;
广义位移控制法在结构几何非线性分析中的应用
2.
Dynamics analysis of multibody system based on geometric nonlinear characteristic of elastic body;
基于弹性体几何非线性的多体系统动力学分析
3.
Application of generalized ouasi-variational principles with two kinds of variables in geometric nonlinear non-conservative elasto-dynamics;
几何非线性非保守系统弹性动力学两类变量的广义拟变分原理的应用
6) geometrically nonlinear
几何非线性
1.
3D curved-beam element for geometrically nonlinear analysis of arch structure;
拱结构空间几何非线性分析的曲梁单元
2.
By splitting the stress into lower order and higher order terms, a new nonlinear variational principle is developed and a 9node solid shell element with 6 DOF per node is derived for geometrically nonlinear analysis of composite laminated sh.
通过定义广义应力,提出了一个改进的刚度矩阵,以克服固体壳元的厚度自锁问题,并能保证沿复合材料层合结构厚度方向上的连续应力分布;将应力插值函数分为低阶和高阶两部分,建议了一个新的非线性变分泛函,推导了一个用于几何非线性分析的九节点固体壳单元,该单元的计算精度和效率基本上与九节点减缩积分单元相当,与同类型其他单元相比,该单元显著提高了计算效率。
3.
The geometrically nonlinear problem of laminated plates with fiber reinforced composite is analysised with finite strip method and the nonlinear equations are resolved using the NewtonRaphson method.
本文用有限条方法分析了复合材料层合板的几何非线性问题,并用Nowton-Raphson迭代法求解非线性方程组,计算得到的线性解与非线性解分别与经典解析解和实验解吻合较好。
补充资料:半导体非线性光学材料
半导体非线性光学材料
semiconductor nonlinear optical materials
载流子传输非线性:载流子运动改变了内电场,从而导致材料折射率改变的二次非线性效应。④热致非线性:半导体材料热效应使半导体升温,导致禁带宽度变窄、吸收边红移和吸收系数变化而引起折射率变化的效应。此外,极性半导体材料大都具有很强的二次非线性极化率和较宽的红外透光波段,可以作为红外激光的倍频、电光和声光材料。 在量子阱或超晶格材料中,载流子的运动一维限制使之产生量子尺寸效应,使载流子能态分布量子化,并产生强烈的二维激子效应。该二维体系材料中激子束缚能可达体材料的4倍,因此在室温就能表现出与激子有关的光学非线性。此外,外加电场很容易引起量子能态的显著变化,从而产生如量子限制斯塔克效应等独特的光学非线性效应。特别是一些11一VI族半导体,如Znse/ZnS超晶格中激子束缚能非常高,与GaAs/AIGaAs等m一V族超晶格相比,其激子的光学非线性可以得到更广泛的应用。 半导体量子阱、超晶格器件具有耗能低、适用性强、集成度高和速度快等优点,以及系统性强和并行处理的特点。因此有希望制作成光电子技术中光电集成器件,如各种光调制器、光开关、相位调制器、光双稳器件及复合功能的激光器件和光探测器等。 种类半导体非线性光学材料主要有以下4种。 ①111一V族半导体块材料:GaAs、InP、Gasb等为窄禁带半导体,吸收边在近红外区。 ②n一巩族半导体量子阱超晶格材料:HgTe、CdTe等为窄禁带半导体,禁带宽度接近零;Znse、ZnS等为宽禁带半导体,吸收带边在蓝绿光波段。Znse/ZnS、ZnMnse/ZnS等为蓝绿光波段非线性光学材料。 ③111一V族半导体量子阱超晶格材料:有GaAs/AIGaAs、GalnAs/AllnAs、GalnAs/InP、GalnAs/GaAssb、GalnP/GaAs。根据两种材料能带排列情况,将超晶格分为I型(跨立型)、n型(破隙型)、llA型(错开型)3种。 现状和发展超晶格的概念是1969年日本科学家江崎玲放奈和华裔科学家朱兆祥提出的。其二维量子阱中基态自由激子的非线性吸收、非线性折射及有关的电场效应是目前非线性集成光学的重要元件。其制备工艺都采用先进的外延技术完成。如分子束外延(MBE)、金属有机化学气相沉积(MOCVD或MOVPE)、化学束外延(CBE)、金属有机分子束外延(MOMBD、气体源分子束外延(GSMBE)、原子层外延(ALE)等技术,能够满足高精度的组分和原子级厚度控制的要求,适合制作异质界面清晰的外延材料。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条