1) complex cepstral filter
复倒谱域滤波
1.
It is also found that the dereverberation effect will improve if a Gauss window is used before complex cepstral filtering in time domain.
根据多种去混响评价指标,确定复倒谱域"低通滤波器"的最高截止点、过渡带宽和过渡带的曲线特性等参数,发现在通常混响时间范围内,"低通滤波器"最高截止点与混响时间无关,复倒谱域滤波前加高斯窗可以改善去混响效果。
2) cepstral filtering
倒谱滤波
3) litered-spectral
倒滤波谱
4) Reciprocal spectrum filter
倒数谱滤波
5) wavelet-cepstrum
小波倒谱
1.
A new filtration method based on wavelet-cepstrum model and its application in ultrasonic stress detection;
基于小波倒谱模型的滤波处理技术及其在超声应力检测中的应用
6) Complex cepstrum
复倒谱
1.
An audio watermarking algorithm based on wavelet transform and complex cepstrum transform;
基于离散小波变换和复倒谱的音频水印算法
2.
Then adopting minimum phase feature and complex cepstrum technology,this paper proposes the technique for the realizable filter in physics.
针对目前Weibull分布杂波仿真中没有考虑线性滤波器物理可实现性问题,首先深入研究了该杂波模型的统计特性及其ZMNL仿真方法;在此基础上,引入最小相位特性与复倒谱技术,提出了一种物理可实现的滤波器产生方法,同时详细阐述了物理可实现Weibull分布杂波随机序列产生的流程;最后,进行了仿真实验,仿真结果证明了该方法的准确性和有效性。
3.
Then we adopted minimum phase feature and complex cepstrum technology,proposed the technique of the realizable filter in physics.
针对目前Log-Normal分布杂波仿真中没有考虑线性滤波器物理可实现性的问题,首先研究了该杂波模型的统计特性及其ZMNL仿真方法;在此基础上,引入最小相位特性与复倒谱技术,提出了一种物理可实现的滤波器产生方法,同时详细阐述了物理可实现Log-Normal分布杂波随机序列产生的流程;最后,进行了仿真实验,仿真结果证明了该方法的准确性和有效性。
补充资料:复倒谱
一个函数的傅里叶变换的对数的傅里叶反变换。对褶积信号的线性分离作用,在实际信号处理中很有用处,例如可应用于通信、建筑声学、地震分析、地质勘探和语音处理等领域。尤其在语音处理方面,应用复倒谱算法可制成同态预测声码器系统,用于高度保密的通信。
在离散信号x(n)情况下,用z变换表示复倒谱,可以写作
复倒谱可以利用同态系统中一种特定的特征系统来求得,如图所示。为了区别于用一般方法所求得的频谱(spectrum),将spectrum这一词前半部(spec)字母顺序颠倒即成cepstrum,根据词形定名为倒谱。又因频谱一般为复数谱,故称为复倒谱。为了说明复倒谱的性质,假设已知两信号x1(n)和x2(n)相褶积而得到的时间函数x(n),对它们分别求其离散傅里叶变换,写作
X(ω)=DFT[x(n)] X1(ω)=DFT[x1(n)]
X2(ω)=DFT[x2(n)]
按上述定义,可得到如下关系式
=IDFT{log[X(ω)]}
=IDFT{log[X1(ω)]}+IDFT{log[X2(ω)]}
由此可见,通过复倒谱的运算可将x1(n)和x2(n)的褶积关系变换为相加关系,再采用一般线性系统对它们进行滤波处理。
在离散信号x(n)情况下,用z变换表示复倒谱,可以写作
复倒谱可以利用同态系统中一种特定的特征系统来求得,如图所示。为了区别于用一般方法所求得的频谱(spectrum),将spectrum这一词前半部(spec)字母顺序颠倒即成cepstrum,根据词形定名为倒谱。又因频谱一般为复数谱,故称为复倒谱。为了说明复倒谱的性质,假设已知两信号x1(n)和x2(n)相褶积而得到的时间函数x(n),对它们分别求其离散傅里叶变换,写作
X(ω)=DFT[x(n)] X1(ω)=DFT[x1(n)]
X2(ω)=DFT[x2(n)]
按上述定义,可得到如下关系式
=IDFT{log[X(ω)]}
=IDFT{log[X1(ω)]}+IDFT{log[X2(ω)]}
由此可见,通过复倒谱的运算可将x1(n)和x2(n)的褶积关系变换为相加关系,再采用一般线性系统对它们进行滤波处理。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条