1) H(·,·)-accretive mappings
H(·,·)-增生映射
1.
A category of generalized set-valued variational inclusions involving H(·,·)-accretive mappings are introduced and studied.
引入和研究了与H(·,·)-增生映射相关的广义变分包含。
2) m-μ-relaxed accretive operators
H-μ-松弛增生映射
1.
In chapter two ,we define a new class of generalized accretive operators named m-μ-relaxed accretive operators in Banach Spaces.
文章第三章在Banach空间中定义了H-μ-松弛增生映射,并通过研究该映射的性质,建立了与H-μ-松弛增生映射相关的预解算子,从而给出了Banach空间中的集值拟变分包含问题的迭代算法及收敛定理。
3) accretive mapping
增生映射
1.
By using the perturbation theories on sums of ranges of nonlinear accretive mappings of Calvert and Gupta,the result on the existence of a solution u∈Lp(Ω) of nonlinear Neumann boundary value problems involving the p-Laplacian operator p,where 2N/(N+1)<p<+∞且N≥1.
利用Calvert和Gupta关于非线性增生映射值域之和的扰动定理,得到了一类含有p拉普拉斯算子Δp的非线性Neumann边值问题在Lp(Ω)空间中解的存在性的结论,其中2N/(N+1)
2.
By using the perturbation theories on sums of ranges of nonlinear accretive mappings of Calvert and Gupta,the abstract results on the existence of solution u∈L~a(Ω)of nonlinear boundary value problems involving the p-Laplacian operator have been obtained, where(2N/N+1)<p(?)s<+∞,for N(?)1.
利用Calvert和Gupta关于非线性增生映射值域的扰动理论,研究了与p-Laplace算子相关的非线性边值问题在L~s(Ω)空间中解的存在性,其中(2N/N+1)<p(?)s<+∞且N(?)1。
3.
Let E be a real uniformly smooth Banach space,A:D(A)=E→2~E be a m-accretive mapping and z∈E be an arbitrary element.
令E为实一致光滑Banach空间,A:D(A)=E→2E为m增生映射,z∈E为任意元,0∈R(A)。
4) strongly accretive mapping
强增生映射
1.
We prove that for a strongly accretive mapping in Lp(P<2)the sequence produced by Mann iterate converges strongly to the unique solution of Tx=f.
本文回答了文献[3]中提出的公开问题,即Lp(P<2)空间中的强增生映射,证明了由Mann迭代产生的序列强收敛于方程Tx=f的唯一解。
2.
A related result is obtained that deals with stability of the Mann iterative process with random errors for the solution of nonlinear equation with strongly accretive mapping.
同时 ,一个与非线性强增生映射方程的迭代解的稳定性相关的结果被获
5) m-accretive mapping
m-增生映射
6) T-accretive operators
T-增生映射
1.
In this work,a new class of set-valued quasi variational inclusions with T-accretive operators is introduced and studied.
研究了Banach空间中带T-增生映射的集值拟变分包含问题。
补充资料:[3-(aminosulfonyl)-4-chloro-N-(2.3-dihydro-2-methyl-1H-indol-1-yl)benzamide]
分子式:C16H16ClN3O3S
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条