1) LiNbO3 wafer
铌酸锂基片
1.
Chemical mechanical polishing(CMP)is an efficient ultra-precise machining method to obtain ultra-smooth LiNbO3 wafer.
化学机械抛光(CMP)是获得超平滑无损伤铌酸锂基片的有效加工方式。
2) lithium niobate wafer
铌酸锂晶片
1.
Large diameter lithium niobate wafers(76mm) were polished with chemical mechanical polishing method and SiO_2 Sol as polishing liquid.
本文采用化学机械抛光方法,以S iO2作为抛光液的研磨介质,对76mmZ切向的铌酸锂晶片的抛光进行了深入的研究。
3) LiNbO3
铌酸锂
1.
LiNbO3 ultra-fine powders were prepared via a hydrothermal method with LiOH and Nb2O5 as the starting materials.
以LiOH和Nb2O5为原料,用水热法合成了铌酸锂纳米粉体。
2.
The citrate method was adopted to prepare LiNbO3 ferroelectric film.
采用柠檬酸盐法制备铌酸锂铁电薄膜。
3.
We studied the ultraviolet-light-induced absorption coefficient change and their temperature dependence of the dark decay dynamics in the congruent LiNbO3 crystals doped with In3+ of different concentrations.
研究了不同掺杂浓度的掺铟铌酸锂晶体的紫外光致吸收和浅能级缺陷对应的热激活能。
4) Potassium lithium niobate
铌酸钾锂
1.
Potassium lithium niobate (KLN) has good photoelectric,piezoelectric and nonlinear optical properties,which has broad application in integrated optics and integrated circuits.
铌酸钾锂具有良好的光电、压电及非线性光学性能,在集成光学、集成电路等领域具有广阔的应用前景。
2.
Raman spectra of a batch of potassium lithium niobate(KLN) crystals with different compositions were investigated.
测量了一批不同组分的铌酸钾锂晶体Ram an光谱,发现晶体中位于C格位的L i离子浓度对晶体Ram an光谱产生了强烈的影响:低L i含量晶体中[NbO6]7-八面体所对应的3个Ram an特征光谱线没有发生峰分裂,在100~400 cm-1范围出现的小峰与C格位L i离子浓度相关;当晶体中L i离子浓度增加时,与ν5所对应的Ram an峰在散射几何为X(ZY)Z对应的光谱中加宽,ν2振动模式在两种散射几何中均出现分裂峰,并在100~400 cm-1范围出现小峰数量增多;当L i离子浓度接近晶体化学组分时,微扰进一步加强,5ν所对应峰分裂成3个峰,ν1和ν2振动模式发生部分分裂,在100~400 cm-1范围小峰更为突出。
3.
A series of potassium lithium niobate (KLN) crystals with large size and good homogeity for composional ions have been grown.
用电阻加热提拉法生长了一系列较大尺寸 ,组分离子均匀性较好的铌酸钾锂晶体。
5) lithium niobate
铌酸锂
1.
Relationship between the structure and property of lithium niobate single crystals;
铌酸锂晶体的结构与性能关系研究
2.
Study of the optimum operating mode in lithium niobate acousto-electro-optic modulator;
铌酸锂声电光调制器最优化工作模式研究
3.
Photoelectricity and Electron-transfer Research of Lithium Niobate;
铌酸锂的光电现象与电子迁移研究
6) LiNbO_3
铌酸锂
1.
Observation on the Electric Polarized Inversion Structure of Ferroelectric Domain in LiNbO_3 Crystal with ESEM;
铌酸锂晶体铁电畴电极化反转结构的ESEM观察
2.
Hydrothermal Synthesis and Characterization of LiNbO_3 Polycrystal Powder;
铌酸锂多晶粉体的水热合成及表征
3.
Research on the crystalline properties of LiNbO_3 ceramics prepared by the pechini method;
Pechini法制备铌酸锂陶瓷的结晶性能研究
补充资料:铌酸锂
铌酸锂(linbo3)晶体是目前用途最广泛的新型无机材料之一,它是很好的压电换能材料,铁电材料,电光材料,非线性光学材料及表面波基质材料。铌酸锂作为电光材料在光通讯中起到光调制作用。
电光效应是指对晶体施加电场时,晶体的折射率发生变化的效应。有些晶体内部由于自发极化存在着固有电偶极矩,当对这种晶体施加电场时,外电场使晶体中的固有偶极矩的取向倾向于一致或某种优势取向,因此,必然改变晶体的折射率,即外电场使晶体的光率体发生变化。在光通讯中,电-光调制器就是利用电场使晶体的折射率改变这一原理制成的。电光晶体位于起偏镜和检偏镜之间,在未施加电场时,起偏镜和检偏镜相互垂直,自然光通过起偏镜后检偏镜挡住而不能通过。施加电场时,光率体变化,光便能通过检偏镜。通过检偏镜的光的强弱由施加于晶体上的电压的大小来控制,从而实现通过控制电压对光的强弱进行调制的目的。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条