说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 坐标协因数阵
1)  variance-covariance matrix of coordinates
坐标协因数阵
2)  coordinated factor matrix
协因数阵
1.
Based on the measurement accuracy of the adjustment process for the coordinated factor matrix,a simple algorithm for the solution has been found.
本文从测量平差精度评定的求解协因数阵的过程中,寻找了一种有关协因数阵的简便算法,此算法的特点在于从已知的解法中,提炼出一种便于理解和记忆的方法,从经典的平差解答中找出规律,从而避免了去死记硬背复杂的结论。
3)  co-factor matrix
协因数矩阵
1.
The co-factor matrix Q is derived firstly, then proves that Q is just the Kaley inverse N -1 of N in the case of rank-full, which is Moore-Penrose inverse N + of N in the case of rank-defect.
导出了谱修正迭代结果的协因数矩阵Q^X^X ,证明了当法方程系数矩阵N满秩且呈良态时 ,Q^X^X 就是N的凯利逆N- 1 ;当N秩亏时 ,Q^X^X 就是N的Moore Penrose逆N+ 。
4)  Coordinates matrix
坐标矩阵
5)  Coordinate array
坐标阵列
6)  matrix coordinate
矩阵坐标
1.
The Automatic target-reporting device using infrared matrix coordinate pattern is composed of infrared matrix photoelectric coordinate target,coordinate sensor,mono-chip control unit and RF wireless transmitting-receiving chip TRF69001.
红外线矩阵坐标式自动报靶装置由红外线矩阵光电坐标靶,坐标传感器,单片机控制单元及射频无线发送、接收芯片TRF69001组成。
补充资料:坐标


坐标
coordinates :

  的APOnonlus就已用现在所谓的坐标(这一术语是由G.Leibniz于1694年给出的)定义了二次曲线,尽管Apellonius的坐标没有数值.到了公元二世纪,Rolemy在他的《地理学》《〔沁ography)中已开始把数值坐标用于纬度和经度.14世纪,N.Oresme把坐标用于平面来构作图形,并用术语经度和纬度表示了现在所谓的横坐标和纵坐标. 避免“无中生有”地引人坐标,以保持理论的“纯悴性”,此类尝试未证明其本身的正确性(例如,由Ch.von Staudt(1847)提出的射影坐标(projective叨roii-nates)综合构造法,证明可被简单代数等价物所替代,这导致了可除环上射影几何的概念).然而,这一思想仍在继续,可称之为引人坐标的内在方法(以区别于“无中生有”强加坐标的外来方法),它基于计算目标的位置而配之以关于某些预先选择的标准子集的坐标,这种子集如曲线、曲面等(相应称坐标曲线似)叮dinate curves)、坐标曲面(~dinates、,r-fa岛),等等).这特别适用于其定义涉及数的集含(如度量空间及向量空间),并因此适用于很广泛的有实际重要性的数学对象;这说明了为什么这种方法是如此流行. 线性坐标在有关点的坐标系(点坐标(POint伽r由-nates))中具有特殊的位置.对于这种坐标,其坐标曲线是直线,比如。,国n留直角坐标系(Ca比昭助()咐K)-g川al~rdinate systeln),一二角形坐标系(见四面体坐标(tetrahedral姗rdinates)),重心坐标(bary联:n-trie姗rdinates)和射影坐标‘projective coordlnat〔5).坐标曲线不都是直线的坐标系即为曲线坐标.曲线坐标用于平面L(如极坐标(pol盯咖rdinates);椭圆坐标(elliPtie coordinates);抛物线坐标(Par:,belic姗rdinates);双极坐标( bipolar拟)rdinates))和曲面_l:(测地坐标(罗记esie coord,nates);等温坐标(1、o-the皿al coordinates)等等).人们在使用满足各种条件的曲线网时,引入了许多特殊类型的曲线坐标系,这种坐标系中最重要的一类是正交系(orthogonal sys-tem),其坐标曲线相交成直角. 平面(或曲面)上各种类型的坐标,可以推厂一到(三维)空间.例如,从平面极坐标可以产生空间极坐标的概念(球面坐标(s pheri以l姗rdinates)或柱面坐标(卿-Un山r伽rdinates));从平面双极坐标可以导出回环坐标(toroldal coordinates)、双柱面坐标(bi卿】l。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条