1) slowly oscillating function
缓慢振荡函数
2) slowly oscillating functions
缓慢震荡函数
3) oscillating functions
振荡函数
1.
This paper presents a new highly accurate method of Gaussian integration for oscillating functions of cosine type,the method can get quadrature accuracy of 4n+1 only by 2n quadrature nodes.
给出一种新的高精度的求余弦型振荡函数的Gauss积分方法,该方法在仅调用2n个求积节点的情况下,达到4n+1的求积代数精确度。
2.
Aim To study the numerical integration for a class of oscillating functions type as ∫ π -π f(x) sin( ωx )d x ( ω are positive integers).
目的研究型如∫π-πf(x)sin(ωx)dx(ω为正整数)的振荡函数的数值积分问题。
4) Oscillatory function
振荡函数
1.
The numerical methods to evaluating the Oscillatory function integrals are usually based on no-oscillatory function to establishing interpolatory fuction,such as spline interpolation and Gauss interpolation.
振荡函数积分的数值计算,通常采用对非振荡函数建立插值函数,比如样条插值、Gauss点插值等。
5) oscillating function
振荡函数
1.
The cartoon component is described by piecewise smooth functions(Mumford-Shah model,or M-S model),while the texture is characterized by oscillating functions in G space.
其中结构成分用分段光滑的函数(即Mumford-Shah模型)刻画,纹理部分用振荡函数(G空间)来描述。
6) highly oscillatory functions
高振荡函数
1.
Based on the international research of efficient numerical methods for highly oscillatory functions in the near future,this paper will firstly adopt Gradimir V milovanovic Complex Integration Method to calculate the sine and cosine transform.
正余弦变换是Fourier变换的一种特殊形式,基于近期国际上高振荡函数数值积分高效算法的研究成果,本文首次采用Gradimir V·milovanovic的复积分方法来对正余弦变换进行数值计算,将其转换为求解∫+∞f(x)eiwxdx,通过例子与原有算法进行比较,证明能提高计算效率,而且精度很高。
补充资料:缓慢
不迅速;慢:行动~。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条