1) SSI
子孔径拼接干涉
1.
In order to test large aspheric surfaces without the aid of null optics,the subaperture stitching interferometry(SSI)was proposed.
为了无需其他辅助光学元件就能够实现对大口径非球面的测量,提出了子孔径拼接干涉检测方法。
2.
In order to test large aspheric surfaces without the aid of null optics, a novel method called subaperture stitching interferometry (SSI) is presented.
为了无需辅助元件就能够实现对大口径非球面的检测,将子孔径拼接技术与干涉技术相结合,提出了一种利用子孔径拼接干涉检测非球面的新方法。
2) sub-aperture stitching interferometry
子孔径干涉拼接测量(SSI)
3) stitching of interference fringes
干涉条纹的子孔径拼接
1.
Based on stitching interferometry, a new application of stitching of interference fringes was discussed by using Ritchey_Common method for testing a large aperture optical flat by means of a small interferometer.
提出了用Ritchey_Common法检测大口径光学平面镜时干涉条纹的子孔径拼接方法。
4) Subaperture stitching
子孔径拼接
1.
Testing asphere by subaperture stitching interferometric method;
子孔径拼接干涉法检测非球面
2.
As a high-precision testing method for optical surfaces,accuracy of the subaperture stitching interferometry is very important and must be evaluated quantitatively.
作为一种高精度的光学镜面测量方法,子孔径拼接干涉测量的精度指标十分重要,必须对其进行定量估计。
5) Sub-aperture stitching
子孔径拼接
1.
Application of sub-aperture stitching technique;
子孔径拼接技术应用的研究
2.
This paper gave a brief introduction of the realization principle of sub-aperture stitching examination method.
介绍子孔径拼接检测方法的实现原理,利用实验验证和数理统计理论的理论推导,分析出了元件的倾斜放置和采样点数的大小能够对检测精度产生影响。
3.
The application of sub-aperture stitching in long optical flat was researched.
研究子孔径拼接在长平晶测试中的应用。
6) stitching interferometry
子孔径拼接
1.
Study on the sub-aperture stitching interferometry for large plano-optics;
大口径光学平面的子孔径拼接检验研究
补充资料:长度计量技术:孔径测量
对於孔的直径的测量﹐有直接测量﹑间接测量和综合测量等测量方法。孔径测量是长度计量技术的主要内容之一。
直接测量 利用两点或三点定位﹐直接测量出孔径的方法﹐也是最常用的孔径测量方法。根据被测孔径的精度等级﹑尺寸和数量大小﹐可以採用能测孔径的通用长度测量工具﹐例如游标卡尺(见卡尺)﹑工具显微镜﹑万能比长仪﹑卧式测长仪(见测长机)﹑卧式光学计(见比较仪)和气动量仪等﹔也可採用专用的孔径测量工具﹐例如内径千分尺﹑内径百分錶和千分錶﹑内径测微仪﹑电子塞规和利用气动﹑光学﹑电学等原理的孔径量仪等。利用槓桿机构测孔﹕此法(图1 利用槓桿机构测孔 )常用於手携式孔径测量工具﹐例如内径百分錶﹑机械式或电学式内径测微仪等。被测孔径尺寸与校对环规孔径之差通过槓桿机构从百分錶﹑机械式或电学式测微仪读出。这类测孔工具的测量孔径范围一般为 10~800毫米﹐其中内径测微仪的测量精确度可达3~5微米。利用斜楔原理测孔﹕此法(图2 利用斜楔原理测孔 )也常用於手携式孔径测量工具。其中用於测量小孔的内径百分錶﹐可以测量直径小至 0.5毫米的孔。被测孔径压缩测头使带圆锥体的测杆移动时﹐从百分錶或测微仪上便可读出孔径的误差。三点定位法适用於测量直径在 3毫米以上的孔。当测杆转动时﹐由固定螺母作用使测杆向前移动﹐通过测杆顶端的带有螺旋形凸台的圆锥体使 3个测头向外移动与被测孔接触。从固定套管和微分筒上的刻度读出被测孔径尺寸。此类孔径测量工具有三爪内径千分尺。利用气动﹑光学﹑电动等原理製成的座式孔径量仪测量高精度孔径﹐必须在接近20℃的恆温条件下进行。光波干涉式孔径测量仪测量孔径的范围为1~50毫米﹐精确度为±0.5微米。
间接测量 先测量与孔径有关的函数﹐再换算出孔径尺寸。主要有下列两种方法﹕利用三点定一圆原理﹐测出被测孔圆周上任意三点的坐标值﹐然后求出方程式2+2+D +E +F =0中的係数D ﹑E ﹑F ﹐即可按计算式求得被测孔径﹐此法一般用於带有电子计算机的三坐标测量机﹔用直径已知的滚轮与被测孔壁对滚﹐测出被测孔圆周长﹐然后计算出孔径。此法适用於测量直径大於500毫米﹑具有连续表面的孔。应用此法的测量工具称为大直径测量仪﹐也常用於大型工件的外径测量。
直接测量 利用两点或三点定位﹐直接测量出孔径的方法﹐也是最常用的孔径测量方法。根据被测孔径的精度等级﹑尺寸和数量大小﹐可以採用能测孔径的通用长度测量工具﹐例如游标卡尺(见卡尺)﹑工具显微镜﹑万能比长仪﹑卧式测长仪(见测长机)﹑卧式光学计(见比较仪)和气动量仪等﹔也可採用专用的孔径测量工具﹐例如内径千分尺﹑内径百分錶和千分錶﹑内径测微仪﹑电子塞规和利用气动﹑光学﹑电学等原理的孔径量仪等。利用槓桿机构测孔﹕此法(图1 利用槓桿机构测孔 )常用於手携式孔径测量工具﹐例如内径百分錶﹑机械式或电学式内径测微仪等。被测孔径尺寸与校对环规孔径之差通过槓桿机构从百分錶﹑机械式或电学式测微仪读出。这类测孔工具的测量孔径范围一般为 10~800毫米﹐其中内径测微仪的测量精确度可达3~5微米。利用斜楔原理测孔﹕此法(图2 利用斜楔原理测孔 )也常用於手携式孔径测量工具。其中用於测量小孔的内径百分錶﹐可以测量直径小至 0.5毫米的孔。被测孔径压缩测头使带圆锥体的测杆移动时﹐从百分錶或测微仪上便可读出孔径的误差。三点定位法适用於测量直径在 3毫米以上的孔。当测杆转动时﹐由固定螺母作用使测杆向前移动﹐通过测杆顶端的带有螺旋形凸台的圆锥体使 3个测头向外移动与被测孔接触。从固定套管和微分筒上的刻度读出被测孔径尺寸。此类孔径测量工具有三爪内径千分尺。利用气动﹑光学﹑电动等原理製成的座式孔径量仪测量高精度孔径﹐必须在接近20℃的恆温条件下进行。光波干涉式孔径测量仪测量孔径的范围为1~50毫米﹐精确度为±0.5微米。
间接测量 先测量与孔径有关的函数﹐再换算出孔径尺寸。主要有下列两种方法﹕利用三点定一圆原理﹐测出被测孔圆周上任意三点的坐标值﹐然后求出方程式2+2+D +E +F =0中的係数D ﹑E ﹑F ﹐即可按计算式求得被测孔径﹐此法一般用於带有电子计算机的三坐标测量机﹔用直径已知的滚轮与被测孔壁对滚﹐测出被测孔圆周长﹐然后计算出孔径。此法适用於测量直径大於500毫米﹑具有连续表面的孔。应用此法的测量工具称为大直径测量仪﹐也常用於大型工件的外径测量。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条