1) lightning energy
雷击能量
2) withstand-lightning performance
耐雷击性能
1.
The paper discusses that the construction and technique parameter of OPGW when design and choice of OPGW applied in EHV and UHV situation,such as Cable Diameter(CD),Cable Weight(CW),Rated Tensile Strength(RTS) and withstand-lightning performance and so on.
讨论了在超高压和特高压线路中,对OPGW光缆选型设计时,应考虑光缆的结构和技术参数,如光缆外径、重量、标称抗拉强度(RTS)及耐雷击性能等,还应该考虑到这些参数之间存在相互制约的关系。
3) impact energy
冲击能量
1.
The dynamic impact response behaviors of TiNi alloy at various impact energy and temperature were studied using the simple pendulum impact testing system.
利用单摆冲击试验设备,对TiNi合金不同冲击能量及温度条件下的冲击响应行为进行了研究。
2.
The article describes determination of the characteristic values of impact energy and its use such as steel ductile-brittle transition.
介绍了冲击能量特征值的测定及其在钢的冷脆转变等方面的应用。
3.
the results showed that the life of initial peeling off depending on impact energy and impact frequency,and it is also related to surface roughness.
结果表明,端面起始剥落寿命主要取决于冲击能量和冲击频率,也和端面粗糙度有关。
4) hitting energy
打击能量
1.
Measuring method for hitting energy and hitting power of screw press;
螺旋压力机打击能量及打击力测试方法探讨
5) impact energy
撞击能量
1.
Based on the summarization of the research on impact energy of mooring ships under wave actions and analysis of the main factors influencing the impact energy on wharf induced by mooring ships,this paper points out the adaptability of the existing calculation methods,and proposes some suggestions on the contents and orientation of further research.
归纳和总结国内外有关系泊船舶在波浪作用下对靠船设施的撞击作用的研究,分析影响系泊船舶撞击能量的若干主要因素,指出当前国内外各类撞击能量计算公式的适用性。
2.
The paper describes it is necessary to calculate the impact energy of the vessel against the wharf before proposing the design of fender and measures of the use when renovating the old wharf.
介绍老码头修复时,通过计算船舶对码头的撞击能量,提出护航的设计和使用措施。
3.
It is of key importance to conclude accurately the impact energy exerted by mooring ship under wave actions for the design of terminal and the selection and design of rubber fender.
系泊船舶荷载是外海开敞式码头设计的主要依据之一,从动能定理角度分析,船舶的撞击力与船舶的撞击能量有关,如何准确确定波浪作用下系泊船舶对码头的撞击能量,对于码头设计和护舷的选取至关重要。
6) strike energy
撞击能量
1.
This paper analyzes the characteristics and modes of ferryboats′ berthing,discusses the calculation method of strike energy about large-scale ferryboats,and recommends reasonable calculation mode.
分析轮渡工程渡轮的靠泊特点以及靠泊模式,探讨大型轮渡码头渡轮撞击能量的计算模式,并提出建议的计算模式。
2.
As a considerable ingredient of wharf s secure use, the strike energy against wharf is affected by many factors.
码头撞击能量作为影响码头使用安全的一个重要因素,它受到许多因素的影响。
补充资料:不锈钢的物理性能、力学性能和耐热性能
不锈钢的物理性能
不锈钢和碳钢的物理性能数据对比,碳钢的密度略高于铁素体和马氏体型不锈钢,而略低于奥氏体型不锈钢;电阻率按碳钢、铁素体型、马氏体型和奥氏体型不锈钢排序递增;线膨胀系数大小的排序也类似,奥氏体型不锈钢最高而碳钢最小;碳钢、铁素体型和马氏体型不锈钢有磁性,奥氏体型不锈钢无磁性,但其冷加工硬化生成成氏体相变时将会产生磁性,可用热处理方法来消除这种马氏体组织而恢复其无磁性。
奥氏体型不锈钢与碳钢相比,具有下列特点:
1)高的电阴率,约为碳钢的5倍。
2)大的线膨胀系数,比碳钢大40%,并随着温度的升高,线膨胀系数的数值也相应地提高。
3)低的热导率,约为碳钢的1/3。
不锈钢的力学性
不论不锈钢板还是耐热钢板,奥氏体型的钢板的综合性能最好,既有足够的强度,又有极好的塑性同时硬度也不高,这也是它们被广泛采用的原因之一。奥氏体型不锈钢同绝大多数的其它金属材料相似,其抗拉强度、屈服强度和硬度,随着温度的降低而提高;塑性则随着温度降低而减小。其抗拉强度在温度15~80°C范围内增长是较为均匀的。更重要的是:随着温度的降低,其冲击韧度减少缓慢,并不存在脆性转变温度。所以不锈钢在低温时能保持足够的塑性和韧性。
不锈钢的耐热性能
耐热性能是指高温下,既有抗氧化或耐气体介质腐蚀的性能即热稳定性,同时在高温时双有足够的强度即热强性。
不锈钢国际标准标准
标准 标准名
GB 中华人民共和国国家标准(国家技术监督局)
KS 韩国工业标准协会规格Korean Standard
AISI 美国钢铁协会规格America Iron and Steel Institute
SAE 美国汽车技术者协会规格Society of Automative Engineers
ASTM 美国材料试验协会规格American Society for Testing and Material
AWS 美国焊接协会规格American Welding Society
ASME 美国机械技术者协会规格American Society of Mechanical Engineers
BS 英国标准规格British Standard
DIN 德国标准规格Deutsch Industria Normen
CAS 加拿大标准规格Canadian Standard Associatoin
API 美国石油协会规格American Petroleum Association
KR 韩国船舶协会规格Korean Resister of Shipping
NK 日本省事协会规格Hihon Kanji Koki
LR 英国船舶协会规格Llouds Register of Shipping
不锈钢和碳钢的物理性能数据对比,碳钢的密度略高于铁素体和马氏体型不锈钢,而略低于奥氏体型不锈钢;电阻率按碳钢、铁素体型、马氏体型和奥氏体型不锈钢排序递增;线膨胀系数大小的排序也类似,奥氏体型不锈钢最高而碳钢最小;碳钢、铁素体型和马氏体型不锈钢有磁性,奥氏体型不锈钢无磁性,但其冷加工硬化生成成氏体相变时将会产生磁性,可用热处理方法来消除这种马氏体组织而恢复其无磁性。
奥氏体型不锈钢与碳钢相比,具有下列特点:
1)高的电阴率,约为碳钢的5倍。
2)大的线膨胀系数,比碳钢大40%,并随着温度的升高,线膨胀系数的数值也相应地提高。
3)低的热导率,约为碳钢的1/3。
不锈钢的力学性
不论不锈钢板还是耐热钢板,奥氏体型的钢板的综合性能最好,既有足够的强度,又有极好的塑性同时硬度也不高,这也是它们被广泛采用的原因之一。奥氏体型不锈钢同绝大多数的其它金属材料相似,其抗拉强度、屈服强度和硬度,随着温度的降低而提高;塑性则随着温度降低而减小。其抗拉强度在温度15~80°C范围内增长是较为均匀的。更重要的是:随着温度的降低,其冲击韧度减少缓慢,并不存在脆性转变温度。所以不锈钢在低温时能保持足够的塑性和韧性。
不锈钢的耐热性能
耐热性能是指高温下,既有抗氧化或耐气体介质腐蚀的性能即热稳定性,同时在高温时双有足够的强度即热强性。
不锈钢国际标准标准
标准 标准名
GB 中华人民共和国国家标准(国家技术监督局)
KS 韩国工业标准协会规格Korean Standard
AISI 美国钢铁协会规格America Iron and Steel Institute
SAE 美国汽车技术者协会规格Society of Automative Engineers
ASTM 美国材料试验协会规格American Society for Testing and Material
AWS 美国焊接协会规格American Welding Society
ASME 美国机械技术者协会规格American Society of Mechanical Engineers
BS 英国标准规格British Standard
DIN 德国标准规格Deutsch Industria Normen
CAS 加拿大标准规格Canadian Standard Associatoin
API 美国石油协会规格American Petroleum Association
KR 韩国船舶协会规格Korean Resister of Shipping
NK 日本省事协会规格Hihon Kanji Koki
LR 英国船舶协会规格Llouds Register of Shipping
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条