1) Bayesian judgment theory
贝叶斯判断理论
1.
Combining Bayesian judgment theory,the average cross-entropy of posterior probability of the pixels of original image to objective and background areas presented differences between classes,and this paper maximized the posterior probability to judge pixels in which different regions to obtain the optimal level of the threshold.
在分析了传统的Canny算法的基础上,用自适应滤波器代替原有的高斯滤波器,并利用交叉熵来度量目标和背景间的差异,结合贝叶斯判断理论,将这种类间差异性用原始图像中的像素点判决到目标和背景两类区域的后验概率之间的交叉熵的平均值来表示,通过最大化将像素点判决到不同区域的后验概率来获取最优的高低阈值。
2) Bayes decision theory
贝叶斯判定理论
3) Bayesian theory
贝叶斯理论
1.
Application of Bayesian theory in multiband SAR images fusion for classification;
贝叶斯理论在多波段SAR图像分类融合中的应用
2.
Algorithm of image segmentation based on wavelet transform and Bayesian theory;
基于小波变换和贝叶斯理论的图像分割算法
3.
Evaluation of statistics of multiple defects in bored piles using Bayesian theory;
基于贝叶斯理论的灌注桩多个缺陷统计特性分析
4) Bayesian theorem
贝叶斯理论
1.
Bayesian theorem based on-line leakage detection and localization of municipal water supply network;
基于贝叶斯理论的城市供水管网泄漏在线检测与定位
2.
Three-parameter AVO waveform inversion based on Bayesian theorem;
基于贝叶斯理论的AVO三参数波形反演
3.
Simultaneous three-term AVO inversion based on Bayesian theorem;
基于贝叶斯理论的振幅随偏移距变化三参数同步反演
5) bayesian
贝叶斯理论
1.
Test on a Weapon Spare Part Demand Model Based on Bayesian Theory
基于贝叶斯理论的武器备件需求模型检验
2.
Multiple classification methods are introduced and a Bayesian-based Compound Classification Method (BCCM) is presented, which makes prediction by combining the prediction of multiple classifiers according to their accuracy matrix.
在研究分析多种适用于医学诊断的分类方法的基础上,论文提出基于贝叶斯理论的复合分类方法(Bayesian-based Compound Classification Method,BCCM),采用条件概率计算的方法组合多个分类器的诊断结果以提高分类准确率。
3.
Research on the Urban Land Use Dynamic Change Simulation Based on Bayesian;
本文提出基于贝叶斯理论的权重因子方法进行城市土地利用的动态变化模拟,为城市扩展模拟提供了新的思路。
6) Bayes theory
贝叶斯理论
1.
An optimization model of employee setup based on Bayes theory;
基于贝叶斯理论的员工配置优化模型
2.
Application of Data Mining with the Bayes Theory in Information of Universities;
基于贝叶斯理论的数据挖掘在高校信息管理的应用研究
3.
On the basis of Bayes theory and Fuzzy system theory, a new method on structural damage prediction of seismic disasters is established.
运用贝叶斯理论与模糊理论 ,提出了一种对结构物震害预测的新方法 ,该方法较充分地考虑了结构物震害的一般统计特性和某一特定结构物的特殊性 ,能较全面地反映结构物震害的实际情况 。
补充资料:贝叶斯分类器
在具有模式的完整统计知识条件下,按照贝叶斯决策理论进行设计的一种最优分类器。分类器是对每一个输入模式赋予一个类别名称的软件或硬件装置,而贝叶斯分类器是各种分类器中分类错误概率最小或者在预先给定代价的情况下平均风险最小的分类器。它的设计方法是一种最基本的统计分类方法。
最小错误概率贝叶斯分类器 把代表模式的特征向量x分到c个类别(ω1,ω2,...,ωc)中某一类的最基本方法是计算在 x的条件下,该模式属于各类的概率,用符号P(ω1|x),P(ω2|x),...,P(ωc|x)表示。比较这些条件概率,最大数值所对应的类别ωi就是该模式所属的类。例如表示某个待查细胞的特征向量 x属于正常细胞类的概率是0.2,属于癌变细胞类的概率是0.8,就把它归类为癌变细胞。上述定义的条件概率也称为后验概率,在特征向量为一维的情况下,一般有图中的变化关系。当 x=x*时,P(ω1|x)=P(ω2|x)对于 x>x*的区域,由于P(ω2|x)>P(ω1|x)因此x属ω2类,对于x*的区域,由于P(ω1|x)>P(ω2|x),x属ω1类,x*就相当于区域的分界点。图中的阴影面积就反映了这种方法的错误分类概率,对于以任何其他的 x值作为区域分界点的分类方法都对应一个更大的阴影面积,因此贝叶斯分类器是一种最小错误概率的分类器
一般情况下,不能直接得到后验概率而是要通过贝叶斯公式
进行计算。式中的P(x│ωi)为在模式属于ωi类的条件下出现x的概率密度,称为x的类条件概率密度;P(ωi)为在所研究的识别问题中出现ωi类的概率,又称先验概率;P(x)是特征向量x的概率密度。分类器在比较后验概率时,对于确定的输入x,P(x)是常数,因此在实际应用中,通常不是直接用后验概率作为分类器的判决函数gi(x)(见线性判别函数)而采用下面两种形式:
对所有的c个类计算gi(x)(i=1,2,...,c)。与gi(x)中最大值相对应的类别就是x的所属类别。
最小风险贝叶斯分类器 由于客观事物的复杂性,分类器作出各种判决时的风险是不一样的。例如将癌细胞误判为正常细胞的风险就比将正常细胞误判为癌细胞的风险大。因此,在贝叶斯分类器中引入了风险的概念。在实际应用中根据具体情况决定各种风险的大小,通常用一组系数Cij来表示。Cij表示分类器将被识别样本分类为ωi,而该样本的真正类别为ωj时的风险。设计最小风险分类器的基本思想是用后验概率计算将 x分类为ωi的条件风险
比较各Ri(x)的大小,与最小值对应的类别是分类的结果。评价这种分类器的标准是平均风险,它的平均风险最小。在实际应用时,后验概率是难以获得的,根据模式类别的多少和Cij的取值方式,可设计出各种分类器,例如模式为两类时,判别函数为
如果选择C11和C22为零,C12和C21为1,它就是两类最小错误概率分类器。实际上,最小错误概率分类器是最小风险分类器的一种特殊情况。
设计贝叶斯分类器的关键是要知道样本特征 x的各种概率密度函数。条件概率密度函数为多元正态分布是研究得最多的分布。这是由于它的数学表达式易于分析,在实际应用中也是一种常见的分布形式。经常使用参数方法来设计正态分布的判别函数。
参考书目
福永圭之介著,陶笃纯译:《统计图形识别导论》,科学出版社,北京,1978。
最小错误概率贝叶斯分类器 把代表模式的特征向量x分到c个类别(ω1,ω2,...,ωc)中某一类的最基本方法是计算在 x的条件下,该模式属于各类的概率,用符号P(ω1|x),P(ω2|x),...,P(ωc|x)表示。比较这些条件概率,最大数值所对应的类别ωi就是该模式所属的类。例如表示某个待查细胞的特征向量 x属于正常细胞类的概率是0.2,属于癌变细胞类的概率是0.8,就把它归类为癌变细胞。上述定义的条件概率也称为后验概率,在特征向量为一维的情况下,一般有图中的变化关系。当 x=x*时,P(ω1|x)=P(ω2|x)对于 x>x*的区域,由于P(ω2|x)>P(ω1|x)因此x属ω2类,对于x
一般情况下,不能直接得到后验概率而是要通过贝叶斯公式
进行计算。式中的P(x│ωi)为在模式属于ωi类的条件下出现x的概率密度,称为x的类条件概率密度;P(ωi)为在所研究的识别问题中出现ωi类的概率,又称先验概率;P(x)是特征向量x的概率密度。分类器在比较后验概率时,对于确定的输入x,P(x)是常数,因此在实际应用中,通常不是直接用后验概率作为分类器的判决函数gi(x)(见线性判别函数)而采用下面两种形式:
对所有的c个类计算gi(x)(i=1,2,...,c)。与gi(x)中最大值相对应的类别就是x的所属类别。
最小风险贝叶斯分类器 由于客观事物的复杂性,分类器作出各种判决时的风险是不一样的。例如将癌细胞误判为正常细胞的风险就比将正常细胞误判为癌细胞的风险大。因此,在贝叶斯分类器中引入了风险的概念。在实际应用中根据具体情况决定各种风险的大小,通常用一组系数Cij来表示。Cij表示分类器将被识别样本分类为ωi,而该样本的真正类别为ωj时的风险。设计最小风险分类器的基本思想是用后验概率计算将 x分类为ωi的条件风险
比较各Ri(x)的大小,与最小值对应的类别是分类的结果。评价这种分类器的标准是平均风险,它的平均风险最小。在实际应用时,后验概率是难以获得的,根据模式类别的多少和Cij的取值方式,可设计出各种分类器,例如模式为两类时,判别函数为
如果选择C11和C22为零,C12和C21为1,它就是两类最小错误概率分类器。实际上,最小错误概率分类器是最小风险分类器的一种特殊情况。
设计贝叶斯分类器的关键是要知道样本特征 x的各种概率密度函数。条件概率密度函数为多元正态分布是研究得最多的分布。这是由于它的数学表达式易于分析,在实际应用中也是一种常见的分布形式。经常使用参数方法来设计正态分布的判别函数。
参考书目
福永圭之介著,陶笃纯译:《统计图形识别导论》,科学出版社,北京,1978。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条