1) asymptotically quasi-nonexpansive
渐近似非扩张
1.
Let T is asymptotically quasi-nonexpansive self-mapping in real Banach space,and it is proved that three steps iterative sequence converges to the fixed point of T.
证明了在实Banach空间中当T是渐近似非扩张自映射时,三步迭代序列收敛到T的不动点。
2) proximally asymptotically nonexpansive type semigroup
近似渐近非扩张型半群
3) asymptotically nonexpansive mappings
渐近非扩张映射
1.
Weak convergence theorem of asymptotically nonexpansive mappings in Banach space;
Banach空间中渐近非扩张映射的弱收敛定理
2.
In particular, fixed point problems of asymptotically nonexpansive mappings in product space are discussed, the convergence problems of the new interative sequence for nonexpansive mappings under specific conditions are discussed in this thesis.
特别讨论了积空间中渐近非扩张映射的不动点问题,研究了某些非扩张映射迭代序列在特定条件下的收敛性问题。
4) asymptotically nonexpansive mapping
渐近非扩张映像
1.
Weak congervence to fixed points of asymptotically nonexpansive mappings by modified Ishikawa iterative sequence;
修改的Ishikawa迭代序列弱收敛到渐近非扩张映像的不动点
2.
This paper investigates into the fixed points for asymptotically nonexpansive mappings in uniformly convex Banach X spaces.
研究了在一致凸Banach空间X中渐近非扩张映像T的不动点问题。
3.
This paper attempts to study the stability problem of asymptotically nonexpansive mapping in Banach space, and does not require the boundedness of domain and range; moreover,useing a new method to be a proof that it is true.
研究了Banach空间中渐近非扩张映像的稳定性问题,不要求定义域和值域有界;且使用了一种新方法进行证明。
5) asymptotically nonexpansive mapping
渐近非扩张映象
1.
Weak and Strong Convergence Theorems of Common Fixed Points for Asymptotically Nonexpansive Mappings with Errors;
渐近非扩张映象公共不动点具误差的弱和强收敛定理
2.
Approximating Common Fixed Points of Asymptotically Nonexpansive Mappings with Errors;
渐近非扩张映象对公共不动点具误差的逼近问题
3.
A new implicit iterative process for a finite family asymptotically nonexpansive mappings in banach spaces;
Banach空间中有限族渐近非扩张映象的新隐迭代程序
6) asymptotically nonexpansive mapping
渐近非扩张映射
1.
Convergence theorems for asymptotically nonexpansive mappings in Banach space;
Banach空间中渐近非扩张映射的收敛定理
2.
First give the definition of a new mapping—(L-α) uniformly lipschitz asymptotically nonexpansive mapping on a uniforn convex Banach space,then construct three-step iterative sequences of(L-α) uniformly lipschitz asymptotically nonexpansive mapping in this subset.
首先定义一致凸Banach空间某非空紧子集上的一种新的映射—(L-α)一致李普希兹渐近非扩张映射,在该子集上构造关于(L-α)一致李普希兹渐近非扩张映射的三步迭代序列,然后来讨论三步迭代序列的收敛性。
3.
A convergence of Ishikawa iteration sequence with errors is investigated in this paper for asymptotically nonexpansive mapping in uniformly convex Banach spaces.
在一致凸 Banach(巴拿赫 )空间中研究了渐近非扩张映射的带误差的Ishikawa迭代序列的收敛性。
补充资料:半群的扩张
半群的扩张
extension of a senu-group
半群的扩张tex加‘佣ofa,”‘一,硕甲:pae川一pe.oe uo-月yrpynn.] 包含某给定半群A作为子半群的半群5.通常我们关心用某种方式与给定半群A相联系的扩张,发展得最好的理论是理想扩张(包含A作为理想的半群).对半群A的理想扩张S的每个元s,可以指定它的左和右平移又:,几二又,x=sx,xPs“xs(x 6A);令:=戈二(又,,几).映射;是S到A的平移包T(A)的同态,且当A是弱可约的情形;是同构(见半群的平移(如比加t沁出of~一groups)).半群TS称为理想扩张S的型(tyl姆ofthei沙乏1 extension).在A的理想扩张中,我们区分出强扩张(s tIDng extenslons)和纯扩张(p眠extensio招),对前者有诏=TA,对后者有f’认二A.A的每个理想扩张是它的一个强扩张的纯扩张. A的理想扩张S称为稠密的(d日崖犯)(或本质的(e处七幻t如)),若S的在A上是内射的同态为同构,A有极大的稠密理想扩张D当且仅当A是弱可约的.这时,相差到同构,D是唯一的且同构于T(A).且这时A称为D中的稠密嵌人理想(山泊义ly一访止以记曰i山川).T(A)的含有认的子半群,也仅仅这些子半群同构于某弱可约半群A的稠密理想扩张. 设S是A的理想扩张且设商半群5人峨同构于Q,则S称为A的通过Q的扩张,下列情形已被广泛研究:完全单半群的理想扩张,群通过完全O单半群的扩张,有消去律的交换半群通过有附加零的群的扩张,等等.一般地,描述半群A通过Q的所有理想扩张的问题远未解决. 在A的其他类型的扩张中,我们要提到那种半群,它有一个同余关系并以A作为它的一个类,特别的是有单位元的半群的所谓Sch旧ier扩张(Seh代ierextens沁ns)([11),这类似于群的sch旧七r扩张.在研究半群的各种扩张的形式时(特别地,对可逆半群),我们用到半群的同调. 半群的扩张理论的另一广阔领域是关于半群A的属于给定类的扩张的存在性的问题.例如任何半群A可嵌人到完全半群中,到单半群中(对于同余关系),或到具有零元和单位元的双单半群中(见单半群(sin1Pk~一grouP”,以及任何有限或可数半群可嵌人到有两个生成元的半群中.已经知道了半群A可嵌人到没有真左理想的半群中,到逆半群(mve巧ion Sellll一gro叩)中,到群中(见半群的嵌入(运止以记吨of serol一groups))的条件.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条