1) moving viscoelastic beam
粘弹性移动梁
1.
Utilizing Hamilton\'s principle and the constitution relations in an integral form,the governing equations of motion for an axially moving viscoelastic beam is derived.
利用哈密尔顿原理在积分型本构模型描述基础上建立粘弹性移动梁的控制方程。
2) viscoelastic beam
粘弹性梁
1.
Theory analysis of viscoelastic beam stochastic response;
粘弹性梁的随机反应理论分析
2.
A nonlinear dynamic model for a viscoelastic beam under a laterally distributed excitation in a time dependent temperature field was derived,which is based on the constitutive description of Kelvin viscoelastic materials,motion equations and strain-displacement relations of a beam with large deflections.
根据Kelvin粘弹性材料本构关系、梁的运动方程及变形几何方程建立了同时具有温度扰动和横向分布力扰动的粘弹性梁非线性动力学模型。
3.
The unified differential equation of buckling and motion of viscoelastic beams under uniformly distributed follower forces in time domain is established by differential operators.
运用微分算子形式推导出了时域内同时考虑拉伸与剪切粘性及转动惯量的粘弹性梁在切向均布随从力作用下的统一屈曲运动微分方程,该方程具有广泛的通用性,适合于任一粘弹性模型。
3) viscoelastic moving beam
黏弹性移动梁
1.
Secondly,the four-dimensional averaged equation under the case of 1∶2 internal resonance is obtained by directly using the method of multiple scales and Galerkin\'s approach to the partial differential governing equation of motion for viscoelastic moving beam.
利用哈密尔顿原理在积分型本构模型描述基础上建立了黏弹性移动梁的控制方程,采用多尺度法和Galerkin离散法得到轴向运动黏弹性梁面内1∶2内振动的平均方程,最后利用数值模拟方法研究了轴向运动黏弹性梁系统在不同参数下的多脉冲跳跃振动,绘出轴向运动黏弹性梁面内横向振动多脉冲跳跃振动的相图及对应的波形图。
4) visvoelastic beam-column
粘弹性梁柱
5) elastic viscoplastic beam
弹粘塑性梁
1.
We obtained the bending equations of the elastic viscoplastic beam with rectangular cross section and showed the difficulties in solving these equations.
给出矩形截面弹粘塑性梁弯曲问题的求解方程,指出求解该方程的困
6) viscoelastic Timoshenko beam
粘弹性Timoshenko梁
1.
The equations of motion governing the quasi_static and dynamical behavior of a viscoelastic Timoshenko beam are derived.
利用粘弹性材料的三维分数导数型本构关系 ,建立粘弹性Timoshenko梁的静、动力学行为研究的数学模型 ;分析Timoshenko梁在阶跃载荷作用下的准静态力学行为 ,得出了问题的解析解 ,考察了一些材料参数对梁的挠度的影响· 基于模态函数讨论了粘弹性Timoshenko梁在横向简谐激励作用下的动力响应 ,并考察了剪切和转动惯性对梁振动响应的影
2.
The dynamical behaviors of a viscoelastic Timoshenko beam with finite deformation were discussed in details Applying the Timoshenko s theory of beams and the fractional derivative constitutive relation, the governing motion equations were derived.
本文讨论了有限变形粘弹性Timoshenko梁的动力学行为。
补充资料:粘弹性
分子式:
分子量:
CAS号:
性质:某些物质(高分子或低分子)在外力作用下所表现的兼有粘性和弹性的性能。例如沥青、油灰、塑料、橡胶、纤维等。如果外力作用较慢即作用时间较长时,它们会像极粘的液体,主要表现为塑性形变。如果外力作用很快即作用时期较短时,它们像弹性固体,主要表现为高弹形变。
分子量:
CAS号:
性质:某些物质(高分子或低分子)在外力作用下所表现的兼有粘性和弹性的性能。例如沥青、油灰、塑料、橡胶、纤维等。如果外力作用较慢即作用时间较长时,它们会像极粘的液体,主要表现为塑性形变。如果外力作用很快即作用时期较短时,它们像弹性固体,主要表现为高弹形变。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条