1) Negatively dependent random sequence
负相关(ND)随机变量序列
2) negatively associated sequence
负相关随机序列
3) negatively associated Gaussian sequences
负相伴高斯随机变量序列
1.
In this paper,by applying the Skorohod martingale embedding theorem,we prove a strong invariance principle for negatively associated Gaussian sequences under power decay rates.
利用鞅的Skorohod表示,在序列是高斯的且序列的协方差系数以幂指数速度递减的条件下,证明了负相伴高斯随机变量序列的一个强不变原理。
4) associated random variable sequence
相协随机变量序列
1.
This paper presents some almost sure convergence properties and a strong law of large numbers for the partial sum of associated random variable sequences based on the Hajek-Renyi inequality for associated random variables and the Chung-Erdos inequality for event sequences using the Kronecker lemma and the Borel-Cantelli lemma,which generalize and improve the result in related literature.
文章基于相协随机变量序列的Hajek-Renyi不等式和事件序列的Chung-Erdos不等式,利用Krone-cker引理和Borel-Cantelli引理,给出相协随机变量序列部分和的几乎处处收敛性和强大数定律型的结果,推广和改进了吴爱娟论文中定理2和定理3的结果。
5) sequence of dependent d iscrete variables
离散相依随机变量序列
补充资料:负相关
分子式:
CAS号:
性质:在回归与相关分析中,表示因变量,y与自变量x相关程度的相关系数г<0,称y与x为负相关。即y随x增大(减小)而减小(增大)。
CAS号:
性质:在回归与相关分析中,表示因变量,y与自变量x相关程度的相关系数г<0,称y与x为负相关。即y随x增大(减小)而减小(增大)。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条