1) restricted-neighborhood
限定邻域
2) infinite Frechet(v)
无限邻域
3) neighborhood assignment
邻域约定
1.
By using neighborhood assignment, we prove that the linearly stratifiable space is monotonically normal, and give a new characterization of linearly stratifiable spaces in terms of monotonic normality.
本文利用邻域约定证明了线性层空间是单调正规的,并且从单调正规的角度得到了线性层空间的一个刻画。
2.
Also gives an equivalent condition of monotonically normal spaces uses of the concept of neighborhood assignment of base.
对拓朴空间的任一单调正规算子,用另一方法导出一个新的单调正规算子N,使对任意的由不交闭集构成的序对(H,K)对应的开集N(H,K)满足性质N(H,K)∩N(K,H)= ;另外用基的邻域约定给出了单调正规空间的一个等价刻划。
3.
We make use of the neighborhood assignments to discuss a special class of monotonically normal spaces, prove that the spaces which have cushioned pair base are M 1,partially answer the question asked by Ceder in 1961.
以邻域约定为工具讨论了一类特殊的单调正规空间 ,证明了具有垫状对基的拓扑空间是M1 空间 ,部分地回答了Ceder在 196 1年提出的一个问
5) infinitesimal neighborhood
无限小邻域
1.
Adopting a limit process, the space time metric of the second order infinitesimal neighborhood nearby the horizon pole of a Kerr Newman Kasuya black hole is obtained.
利用极限法得到了Kerr Newman Kasuya(K N K)黑洞视界极点处二级无限小邻域的度规 ,并证明这个时空度规是以常角速度转动的Rindler度规 。
2.
By using a limiting process, the space time metric of the second order infinitesimal neighborhood nearby one of the two horizon poles of a Kerr Newman black hole is obtained.
利用极限方法得到了Kerr Newman(K N)黑洞视界极点处二级无限小邻域的时空度规 ,并且证明这个时空度规是以常角速度转动的Rindler度
6) n _neighborhood fiaite
n-邻域有限
补充资料:限定
1.在数量﹑范围等方面加以规定。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条