1) L 2-gain
L2-增益
1.
For the control synthesis problem,an LMI-based condition was derived to build a state feedback controller ensuring the closed-loop system is asymptotically stable and has an L 2-gain smaller than a positive scalar gamma.
接着研究系统的L2-增益分析和控制综合问题。
2) L2 gain
L2增益
1.
Then,based on Lyapunov function and the backstepping design technique,a state feedback controller for the slow subsystem is also constructed,which enables the closed-loop system to be internally stable for all bounded interference and satisfies the arbitrarily small bounded L2 gain from exogeneous interfe.
然后基于Lyapunov函数和逆推法构造出慢系统的状态反馈控制器,使得闭环系统对于所有有界干扰是内部稳定的,且从外部扰动输入到输出满足任意小的有界L2增益。
2.
It is shown that L2 gain performance and the control law can be obtained by solving a set of Linear Matrix Inequalities that is numerically feasible with commercially available software.
运用这种方法,系统L2增益控制器设计将转化成求解一组线性矩阵不等式组的可解性问题,可以用软件较方便的求得结果。
3.
The sufficient condition that such a system can keep up its robustly asymptotic stability if the L2 gain is given is put forward,which is described by linear matrix inequality.
讨论了一类不确定多时滞切换混杂系统在任意切换条件下鲁棒渐近稳定的问题,提出了在给定L2增益的情况下系统能够保持鲁棒渐近稳定的充分条件,并采用线性矩阵不等式的形式进行描述。
3) L2-gain
L2增益
1.
Secondly,some notions and conceptions are given for the L2-gain problem of time-delay Hamiltonian systems.
然后针对时滞哈密顿系统提出了L2增益问题,并扩展了拉萨尔不变集原理。
2.
In order to reduce conservative performances resulted in by the application of the Lyapunov function to the analysis of a linear parameter-varying system,the relationships of the stability and L2-gain of the system with the subsection and changing rate of parameters were investigated.
为降低李雅普诺函数(Lyapunov function)分析参数时变系统引起的保守性,研究了系统稳定性、L2增益与参数分段和参数变化率的关系,提出了一种同时考虑参数分段和参数变化率的线性时变参数系统的线性矩阵不等式(LMI)设计方法。
3.
A scheme for an adaptive neural network L2-gain controller was proposed for nonlinear systems with uncertainty.
针对存在不确定性的非线性系统,提出了自适应神经网络L2增益控制器设计方法,将基于Hamilton-Jacobi-Issacs(HJI)不等式和自适应神经网络策略相结合,有效地克服了需要被控对象精确建模的局限性。
4) L_2-gain
L2增益
1.
For an affine nonlinear system affected by internal and external disturbances, the discontinuous state feedback controllers are built by using switching technique and multiple Lyapunov function method with switching laws designed to ensure that for all allowable uncertainties the relevant closed-loop system possesses the prescribed L_2-gain and is asymptotically stable.
针对受内部及外部扰动影响的仿射非线性系统,使用切换技术及多Lyapunov函数方法构造出不连续状态反馈控制器,同时设计切换律,使得对于所有允许的不确定性,相应的闭环系统渐近稳定又具有指定的L2增益。
2.
First,the Lyapunov function and controller for each sub-system are designed by means of Backstepping methods,and then,they are integrated to form the entire Lyapunov function and controller,which not only satisfies the requirement of stability,but also satisfies some performance indices of the L_2-gain.
用Backstepping方法首先对各个子系统设计李雅普诺夫函数和控制器,然后综合起来形成整个系统的李雅普诺夫函数和控制器,不但满足了稳定性的要求,又满足了一定的L2增益性能指标。
3.
Spacecraft robust attitude control design based on L_2-gain stabilization;
研究了有界干扰输入下的航天器姿态调节控制问题,设计了鲁棒姿态控制算法,使得从干扰力矩输入到系统某一指定的性能输出的L2增益小于任意给定的正常数,从而实现了对干扰力矩的抑制。
5) L 2-gain control
L2-增益控制
6) L2 gain control
L2增益控制
1.
Novel nonlinear L2 gain control method for doubly-fed induction motor based on port controlled Hamiltonian model
基于PCH的DFIM非线性L2增益控制新方法
2.
The paper proposes a novel nonlinear L2 gain control method based on the averaged port controlled Hamiltonian(PCH) model of active power filter(APF).
在所建立的有源电力滤波器APF(active power filter)端口受控哈密顿系统PCH(port controlledHamiltonian)平均化模型基础上,提出了一种非线性L2增益控制新方法。
3.
This paper proposes a novel adaptive L2 gain control algorithm with sliding dissipative damping and limitation for Active power filter (APF) based on its averaged port controlled hamitonian (PCH) model.
基于有源电力滤波器(APF)的端口受控哈密顿系统(PCH)平均化模型,提出了一种采用滑动耗散阻尼限幅的自适应L2增益控制新方法。
补充资料:[3-(aminosulfonyl)-4-chloro-N-(2.3-dihydro-2-methyl-1H-indol-1-yl)benzamide]
分子式:C16H16ClN3O3S
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条