1) without eigendecomposition
无需特征分解
2) Eigenvalue decomposition
特征分解
1.
An adaptive method applying eigenvalue decomposition-based spectrum analysis technique to narrow-band digital communication interference suppression in radar is proposed and studied.
基于特征分解谱分析技术 ,提出并研究了在雷达中自适应抑制窄带数字通信信号干扰的方法。
2.
The signal processing model for EM-sensor mounted on the airframe is made by biquaternion and then the eigenvalue decomposition(EVD)of spectral matrix is obtained by means of the EVD of its quaternion adjoint matrix.
针对机载电磁矢量传感器阵列DOA和极化参数估计问题,提出了一种基于复四元数估计方法,该算法利用四元数建立机载电磁矢量传感器阵列信号处理模型,然后利用四元数联合矩阵的特征分解得到阵列数据相关矩阵的特征分解,一方面使得计算过程中数据的贮存量大大减少,另一方面通过推导得到信号子空间和噪声子空间在四元数域上的正交性从而使DOA和极化参数估计的精度更高,仿真证实了本算法的有效性。
3.
The proposed method consists of the segmented matrix eigenvalue decomposition method,independent component analysis and information bits shell-off algrithm based on m sequence\'s shift-and-add characteristics.
针对非周期性DS/CDMA信号PN码序列估计的难题,文中提出了把分段特征分解法、独立分量分析算法和基于m序列移位相加特性的信码剥离算法相结合的盲估计算法。
3) eigen-decomposition
特征分解
1.
According to the principle of kernel function spectral decomposition,the authors express the discrete real kernel as a symmetric matrix,and indicate the discrete bilinear time-frequency transformation as a weighted sum of discrete spectrograms with eigen-decomposition of symmetric matrices.
根据核函数的谱分解理论,把实离散核函数表示为实对称矩阵,利用对称矩阵的特征分解把离散时间双线性时间-频率变换表示为离散时间频谱图的加权和,用频谱图的部分和实现双线性变换的快速近似计算。
2.
Projection approximation subspace tracking with deflation (PASTd) algorithm belonging to eigen-decomposition algorithm was widely used in adaptive beam forming for antenna array.
矩阵特征分解算法中紧缩近似投影子空间跟踪(PASTd)算法在自适应阵波束形成中得到了广泛应用。
3.
Based on the theory of eigen-decomposition of fully polarimetric Synthetic Aperture Radar (SAR) and maximum likelihood (ML) classifier,an unsupervised iteration classification method is proposed.
本文在全极化合成孔径雷达 (SAR)特征分解和最大似然估计 (ML)分类的基础上 ,提出基于全极化SAR极化特征分解及最大似然估计的非监督分类迭代算法 。
4) eigen decomposition
特征分解
1.
Suppression of radio-frequency interference in HFGW radar based on eigen decomposition;
基于特征分解的高频地波雷达抗射频干扰研究
6) eigendecomposition
特征分解
1.
High-resolution direction-of-arrival (DOA) estimation algorithms based on eigendecomposition have a promising future in engineering application for their good performances.
基于特征分解的高分辨方位估计(DOA)算法是一类性能良好的目标定位方法,具有良好的工程应用前景。
2.
The new method avoids the estimation and eigendecomposition of the covariance matrix of the received signals which is the main computational burden in traditional subspace method.
提出了一种基于传播算子的低复杂度二维波达方向估计新算法,该方法避免了常规子空间方法中占主要运算量的估计信号协方差矩阵及其高维矩阵的特征分解,降低了运算复杂度,并且由于无阵列孔径损失,获得了良好的参数估计性能。
3.
Then, exploiting the matrix perturbation theory, the second order correction method of matrix eigendecomposition to update the eigenvalues and eigenvectors is proposed.
利用指数窗法对阵列协方差矩阵作秩 1更新;然后在矩阵扰动 理论基础上,利用矩阵特征分解二阶修正方法更新特征值和特征向量;针对最小特征 值重合情形仅对信号子空间进行递推更新,根据更新了的信号子空间得到动态联合 谱;最后仿真结果验证了该方法的可靠性。
补充资料:无需
1.不需要;不用。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条