2) local coordinate system building
局部坐标系建立
3) establishing coordinate
坐标建立
4) independent coordinate system
独立坐标系
1.
Research about independent coordinate system conversion from Gaussian coordinate system
独立坐标系向高斯坐标系转换的研究
2.
The process of establishing independent coordinate system in JiYuan City is introduced,the calculation method of the ellipsoid parameter of this system is disussed,the relation of conversioning independent coordinate system to National Coordinate System is carried out.
介绍了济源市独立坐标系的建立过程,阐述了济源市独立坐标系椭球参数的计算方法,实现了独立坐标与国家坐标的转换关系。
3.
When a independent coordinate system is not built up strictly according to the survey specification, there are linear conversion and Gauss projection calculation to convert projection zone in converting interactively coordinates from the independent coordinate system to Beijing Geodetic Coordinate System 1954.
由于历史的原因 ,城市独立坐标系建立时没有严格按照国家规范的要求进行 ,这就使得它与国家坐标系的转换包含了线性变换和换带计算两个内容。
5) separate coordinate system
独立网坐标系统
6) Independent coordinate system
独立坐标系统
1.
Establishing and realization of local independent coordinate system;
地方独立坐标系统的建立及其实现
补充资料:坐标
坐标
coordinates :
的APOnonlus就已用现在所谓的坐标(这一术语是由G.Leibniz于1694年给出的)定义了二次曲线,尽管Apellonius的坐标没有数值.到了公元二世纪,Rolemy在他的《地理学》《〔沁ography)中已开始把数值坐标用于纬度和经度.14世纪,N.Oresme把坐标用于平面来构作图形,并用术语经度和纬度表示了现在所谓的横坐标和纵坐标. 避免“无中生有”地引人坐标,以保持理论的“纯悴性”,此类尝试未证明其本身的正确性(例如,由Ch.von Staudt(1847)提出的射影坐标(projective叨roii-nates)综合构造法,证明可被简单代数等价物所替代,这导致了可除环上射影几何的概念).然而,这一思想仍在继续,可称之为引人坐标的内在方法(以区别于“无中生有”强加坐标的外来方法),它基于计算目标的位置而配之以关于某些预先选择的标准子集的坐标,这种子集如曲线、曲面等(相应称坐标曲线似)叮dinate curves)、坐标曲面(~dinates、,r-fa岛),等等).这特别适用于其定义涉及数的集含(如度量空间及向量空间),并因此适用于很广泛的有实际重要性的数学对象;这说明了为什么这种方法是如此流行. 线性坐标在有关点的坐标系(点坐标(POint伽r由-nates))中具有特殊的位置.对于这种坐标,其坐标曲线是直线,比如。,国n留直角坐标系(Ca比昭助()咐K)-g川al~rdinate systeln),一二角形坐标系(见四面体坐标(tetrahedral姗rdinates)),重心坐标(bary联:n-trie姗rdinates)和射影坐标‘projective coordlnat〔5).坐标曲线不都是直线的坐标系即为曲线坐标.曲线坐标用于平面L(如极坐标(pol盯咖rdinates);椭圆坐标(elliPtie coordinates);抛物线坐标(Par:,belic姗rdinates);双极坐标( bipolar拟)rdinates))和曲面_l:(测地坐标(罗记esie coord,nates);等温坐标(1、o-the皿al coordinates)等等).人们在使用满足各种条件的曲线网时,引入了许多特殊类型的曲线坐标系,这种坐标系中最重要的一类是正交系(orthogonal sys-tem),其坐标曲线相交成直角. 平面(或曲面)上各种类型的坐标,可以推厂一到(三维)空间.例如,从平面极坐标可以产生空间极坐标的概念(球面坐标(s pheri以l姗rdinates)或柱面坐标(卿-Un山r伽rdinates));从平面双极坐标可以导出回环坐标(toroldal coordinates)、双柱面坐标(bi卿】l。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条