说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 左共轭梯度方向
1)  left conjugate gradient direction
左共轭梯度方向
1.
In order to overcome the drawbacks of numerical instability and possible breakdowns in the iteration,we transform the formula of the left conjugate gradient method into an equivalent version to generate the left conjugate gradient directions.
为克服该算法数值表现不稳定、迭代中断的缺点,本文对原方法进行等价变形,得到左共轭梯度方向的另一迭代格式,给出一个拟极小化左共轭梯度算法。
2)  conjugated grads
共轭梯度方向
1.
In order to reduce the training time, the weight vector is changed along the conjugated grads of square error function.
通过增加动量项可以避免陷入局部最小,但付出了训练时间长的代价;选择权向量的更新方向为误差函数的共轭梯度方向,可以显著地提高收敛速度。
3)  left conjugate gradient method
左共轭梯度法
1.
The left conjugate gradient method is a recently developed Krylov subspace method which aims to solve large-scale sparse linear systems.
左共轭梯度法是求解大型稀疏线性方程组的一种新兴的Krylov子空间方法。
4)  conjugate gradient method
共轭梯度方法
1.
A class of conjugate gradient method and its global convergence;
一类共轭梯度方法及其全局收敛性(英文)
2.
In this paper,based on a modified FR formula,we propose a new conjugate gradient method with Goldstein line searches.
将一个修正的FR公式和Goldstein线搜索结合,得到一种新的共轭梯度方法。
3.
Three-dimensional paraxial approximate equation with optimized coefficientscan be obtained by using conjugate gradient method under least square premise.
本文在最小二乘意义下用共轭梯度方法导出优化系数的三维傍轴近似方程。
5)  conjugate gradient-type method
共轭梯度类方法
6)  CGS
共轭梯度平方法
补充资料:共轭梯度法
      又称共轭斜量法,是解线性代数方程组和非线性方程组的一种数值方法,例如对线性代数方程组
   A尣=??, (1)式中A为n阶矩阵,尣和??为n维列向量,当A对称正定时,可以证明求(1)的解尣*和求二次泛函 (2)的极小值问题是等价的。此处(尣,у)表示向量尣和у的内积。由此,给定了初始向量尣,按某一方向去求(2)取极小值的点尣,就得到下一个迭代值尣,再由尣出发,求尣等等,这样来逼近尣*。若取求极小值的方向为F在尣(k=1,2,...)处的负梯度方向就是所谓最速下降法,然而理论和实际计算表明这个方法的收敛速度较慢,共轭梯度法则是在 尣处的梯度方向r和这一步的修正方向p所构成的二维平面内,寻找使F减小最快的方向作为下一步的修正方向,即求极小值的方向p(其第一步仍取负梯度方向)。计算公式为再逐次计算
  
   (k=1,2,...)。可以证明当i≠j时,从而p,p形成一共轭向量组;r,r,...形成一正交向量组。后者说明若没有舍入误差的话,至多 n次迭代就可得到(1)的精确解。然而在实际计算中,一般都有舍入误差,所以r,r,...并不真正互相正交,而尣尣,...等也只是逐步逼近(1)的真解,故一般将共轭梯度法作为迭代法来使用。
  
  近来在解方程组(1)时,常将共轭梯度法同其他一些迭代法结合作用。特别是对病态方程组这种方法往往能收到比较显著的效果。其方法是选取一对称正定矩阵 B并进行三角分解,得B=LLT。将方程组(1)化为
    hу=b, (3)此处y=lT尣,b=l-1??,h=l-1Al-T,而。再对(3)用共轭梯度法,计算公式为
  
   (k=0,1,2,...)适当选取B,当B 很接近A时,h的条件数较之A大大减小,从而可使共轭梯度法的收敛速度大为加快,由一些迭代法的矩阵分裂A=M -N,可选取M 为这里的B,例如对称超松弛迭代(SSOR),强隐式迭代(SIP)等,这类方法常称为广义共轭梯度法或预条件共轭梯度法,它也可用于解代数特征值问题。
  
  

参考书目
   冯康等编:《数值计算方法》,国防工业出版社,北京,1978。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条