1) Fp-growth algorithm of Apriori
Fp-growth关联规则算法
1.
The thesis strongle analysed the Fp-growth algorithm of Apriori process,then it provided a database anomaly detection system based on Fp-growth algorithm and at last,the thesis given the results of system test data.
重点分析了Fp-growth关联规则算法的实现过程,提出了一个基于Fp-growth算法的数据库异常检测系统,并给出了系统试验数据结果。
2) FP-Growth arithmetic
FP-Growth算法
1.
This method is applied to the measured steady data of a large -scale liquid propellant rocket engine and tested with FP-Growth arithmetic.
将该方法应用于某大型液体火箭发动机稳态段的热试车数据,然后利用FP-Growth算法对其进行测试,挖掘出了故障数据,进而验证了其可行性。
3) FP-growth algorithm
FP-growth算法
1.
An improved FP-growth algorithm based on aggregative chains is proposed.
提出了一种基于聚合链挖掘频繁模式的改进FP-growth算法。
2.
In order to improve the speed of mining user frequent behavior pattern and FP-tree space utilization,thereby significantly improving the efficiency of security audit data analysis,based on the FP-growth algorithm this paper proposes an improved correlation algorithm suitable for the analysis of the security audit data.
为了提高挖掘用户频繁行为模式的速度和FP-树空间利用率,从而显著提高安全审计数据分析的效率,本文在FP-growth算法的基础上提出了一种改进的适于安全审计数据分析的挖掘频繁模式算法。
3.
In order to adapt to the real-time nature of the intrusion of testing requirements,and enhance the efficiency of algorithms,presented to the FP-Growth algorithms that improves FP-tree table structures and the introduction of key attributes to intrusion detection system.
为了解决入侵检测在不降低精度的同时提高检测速度的问题,提高算法的效率,将FP-Growth算法应用于入侵检测系统中,提出对FP-Growth算法改进FP-tree的头表结构并引入关键属性来挖掘原始审计数据中的频繁模式,实验结果表明改进后的算法比传统的关联算法在入侵检测中的应用效果更好。
4) FP-growth
FP-growth算法
1.
FP-growth is the algorithm mining frequent itemsets without generating candidate itemsets,and it is important to analyze and implement it.
FP-growth算法是不产生候选集的频集挖掘算法,对其分析和实现有重要意义。
2.
The algorithm builds frequent patterns directly as FP-growth algorithm does.
实验表明,其具有与FP-growth算法相当甚至更高的效率。
3.
It is a transformation of FP-Growth.
受经典的Apriori算法思想和FP-Growth算法思想的启发,在结合两者优点的基础上提出了一种新的算法思想,它是对传统的FP-Growth算法的变形。
5) Homo-FP-growth algorithm
类FP-growth算法
6) FP-growth tree
FP-growth(Frequent-Patterngrowth)算法
补充资料:[3-(aminosulfonyl)-4-chloro-N-(2.3-dihydro-2-methyl-1H-indol-1-yl)benzamide]
分子式:C16H16ClN3O3S
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条