1) concept decomposition
概念分解
1.
This paper proposed a concept decomposition-based policy refinement method,thus,the process of policy elaboration could be seen as a process of concept decomposition,which was aimed at transforming the concepts at higher levels into concepts at lower levels.
提出了一种基于概念分解的政策精化方法,将政策的精化归结为对概念的分解,依据本体论中的概念结构将政策中较高层的概念转换为较低层的概念,从而实现政策的精化。
3) understanding concept
理解概念
5) concept understanding
概念理解
1.
Through the cognitive analysis of the concept understanding blocks which occur during the student learning of m.
数学概念学习中,概念理解是首要的;认知心理学研究表明,学生数学概念的获得是一个对概念心理表征的构建过程;相关的数学概念表征的调查研究也证明了数学概念表征与概念理解是相互促进、相互制约的;根据学生在数学概念学习中,对因概念表征缺失引起的概念理解障碍进行认知分析。
补充资料:Banach解析空间
Banach解析空间
Banach analytic space
析映射U~G的芽的层对形式为x~毋(x)f(x)的映射的芽的子层的商,其中卿U~Hom(F,G)是局部解析映射,而O(W)C小(G)是由在W中取值的映射生成的.层集中(W)定义了由E冶1犯比空间的开集及其解析映射的范畴K到f一’(0)上的集合的层的范畴的函子. 一个拓扑空间X,如果具有从范畴K映到X中的集合(其中所有点有同构于某个局部模型的邻域)的层的范畴的函子,就称为压m朗h解析空间(Rm朗h analytjcs详戊). 复解析空间形成E以naeh解析空间范畴的一个完全子范畴,一个E匕朋‘h解析空间是有限维的,如果它的每一个点x有同构于这种模型产(U,F,f)的邻域,且存在映射g:U~U,它诱导出模型的一个自同构,且有完全连续的微分dg二(【11). 压m朗h解析空间的第二种特殊情形是B以比止h解析谁形(E以朋由anal沙n以‘儿ld),即局部同构于E以.队上空间的开集的解析空间一个重要例子是C上的Rm朗h空间的有闭余空间的闭线性子空间的流形. 亨枣呻窖的丘现朗h解衍卑(刨把勿一由助月E以na比出皿lytics比),即形式为召(U,口,f)的模型,具有类似于经典性质的局部性质:原始分解,Hilbert零点定理,局部描述定理,等等,都是可应用的([2]).山皿dl解析空间!Ban汕analytic spa“,玩毗、,8oa“aJ“T“叨ecK0e nP0c1Pane一、Bo} 解析空间概念的无限维推广,‘白产生J对解析结构形变(〔le阮川刀atlon)的研究,这甩,局部模型是1至11长Icll解析集(Banaclla耐卯c set),即C「的山.山空间(即na山s禅ce)E的开集U的子集尸(U,八f)一f’(0),其中少仁 卜F是映到压川aeh空间F的解析映射(a耐 ytlctnaPPing).与有限维情形不同之处在于:在局部模型「.它没有给定一个结构层,似有一个层集小(体),其中体是任意Banaeh空间G中的开集这时,小(G)定义为解
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条