说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 耐盐极限浓度
1)  The limit salt concentration
耐盐极限浓度
2)  Salt-tolerance concentration
耐盐浓度
3)  salt tolerance limit
耐盐极限
4)  threshold concentration
极限浓度
1.
The threshold concentration (or minimum substrate, S min ) is discussed in this article.
讨论了有关有机物生物降解极限浓度 (Smin)的定义 ,介绍了热力学测定方法、动力学测定方法和扩散测定方法等 3种测定极限浓度的方法。
2.
This paper provided a method to evaluate the kinet ic threshold concentration of phenol biodegradation.
从动力学和热力学角度研究表明 ,有机物的生物降解存在极限浓度 ( Smin)。
5)  limiting concentration
极限浓度
1.
Study on limiting concentration of non-uniform particle flow;
不均匀高浓度颗粒流动的极限浓度研究
2.
A numeric method for computing limiting concentration of light component in the distillate of binary batch distillation under constant reflux ratio and hold-up in the column is introduced.
介绍了采用恒回流比操作方法,在塔顶、塔板持液时,间歇精馏二元理想混合物,馏出液中轻组分极限浓度的数值计算方法。
6)  limit concentration
极限浓度
1.
In this paper,the main factors influencing sediment dry density were analyzed,and it was pointed out that the limit concentration of slurry is one of the important indexes affecting sediment dry density.
分析了干容重的主要影响因素,指出浆体的极限浓度是影响干容重的重要指标之一。
2.
The influencing factors of dry density and the angle of repose are emphatically analyzed;and from the correlation between slurry limit concentration and the angle of repose, a calculation formula of dry density is deduced.
分析泥沙干容重及水下休止角的影响因素,并且从极限浓度和干容重的关系出发,推导出干容重的计算公式。
补充资料:上极限和下极限


上极限和下极限
upper and lower limits

  上极限和下极限【u即era闭lower功l‘ts;。epx“戚,”“袱n“匆npe八e月M」 l)序列的上极限和下极限分别是给定的实数序列的所有部分(有限的和无穷的)极限(1而jt)中的最大极限和最小极限.对于任何实数序列{二。}(。=l,2,…),在扩充的数轴上(即在增添符号一的和+的的实数集合中)它的所有部分(有限的和无穷的)极限的集合是非空的,并且具有最大元素和最小元素(有限的和无穷的).部分极限的集合的最大元素称为序列的上极限(up详r lin五t)(腼sup),记为 。呱x。或。叭s叩x。,而最小元素称为下极限(lowerUmit)(Uminf),记为 黑‘·或。叭讨二。.例如,如果 x。=(一1)月则 黑‘”一’,。叭‘一‘·如果 x,,二(一l)”n,则 黑‘·一叭。叭二。一十二.如果 x,=n+(一1)”n,则 澳“一”,悠’一+呱任何序列都具有上极限和下极限,并巨如果一个序列是上(下)有界的,则它的上(下)极限是有限的.一个数a是序列{x。全(陀=1,2,…)的上(下)极限,当且仅当对于任何£>0,下述条件成立:a)存在数刀:,使得对于所有的指标n>。。,不等式x。a一。)成立:b)对于任何指标。。,存在指标”‘=n‘(£,n。),使得对于所有的指标n’>n。,不等式x。>a一。(x。十动成立.条件tl)意味着:对于给定的£>0,在序列{x。}中只存在有限个项无、,使得x。>a+。(x。<“一的.条件b)意味着:存在无穷多项x,.,使得x。>a一。(x。<“+。).如果两个极限都是有限的,则通过改变序列各项的符号,可使下极限化为上极限: 黑“·一。叭‘二 为使序列{x。}(n二1,2,…)具有极限(有限的或无穷的(等于符号一的和+的之一)),其必要和充分条件是 黑x一、,只义二 2)函数f(劝在一点x.,处的上(下)极限是f(x)在x。的一个邻域中的值的集合的上(下)界当这个邻域收缩到x{、时的极限.上(下)极限记为 画.f(·)[、f(·)〕· 设函数、f(x)定义在度量空间R上,并且取实数值.如果x{、〔尺,o(x。;。)是x。的s邻域,。>0,则丽f‘、、一l、f su。,丫·、1 L义‘O(尤。,£)J和 黑f(·)一、{二。黑;:,f(·))·在每一点xoR处,函数f(:)具有上极限了丈灭)和下极限‘f(x)(有限的或无穷的).函数了下刃在R上是上半连续的,函数f(x)在R上是下半连续的(在取值于扩充数轴的函数的半连续概念的意义下,见半连续函数(~一continuous function)). 为使函数.f(x)在点、。处具有有限的或无穷的(等于+的或一田)极限,其必要和充分条件是 华黑f(x)一煦。j.(’)· 函数在一点上的上极限(下极限)的概念可以自然地推广到定义在拓扑空间上的实值函数的情况. 3)集合序列{A。}(n=1,2,…)的上极限和下极限芬另i是集合 A二户叹A。,它是由属于无穷多集合A。的元素x组成的,以及集户乙、 县=业坠A。,它是由属于从某个指标”=n(x)开始的一切集合A。的元素x组成的.显然,Ac万【补注】在英文中,上极限又称supenorlin五t或】ilnitsllperior,下极限又称加几rior limit或止面t inferior.亦见上界和下界(upper and kiwer boullds). 一个集合的子集序列A,,A:,…的上极限和下极限由下列公式给出二 。叭式一*口招*态, 黑通一月贝户/
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条