2) Weighted mean square
加权平均方差
3) weighted mean temperature
加权平均温度
1.
In order to eliminate the error in calculating weighted mean temperature and improve the precision of remote sensing precipitable water vapor, some different methods are introduced and compared in north China, such as in Zhangjiakou, Xingtai and Beijing.
为尽可能地减小计算加权平均温度的误差,提高地基GPS遥感大气水汽总量的精度。
4) mean temperature difference
平均温差
1.
Formulae for calculating the mean temperature difference of rubber to cooling medium in reclaimator and heat transfer coefficient of system have been derived from theory.
从理论上推导出脱硫挤出机中胶料与冷却介质的平均温差及系统的传热系数的计算公式,并结合准数关系式及实验对传热能力和胶料与机筒内壁的对流传热系数进行了计算。
2.
This paper, according to heat transfer basic equation, deduces overall heat transfer coefficients in the transmit heating tube of the pure counterflow arrangement, axial temperature profile of the fluid along the length of transmit heating tube, simulates logarithmic mean temperature difference in a double tube and the effective overall heat transfer coefficient, wi.
本文根据传热基本方程推导纯逆流传热套管的总传热系数,沿传热管长度的流体轴向温度分布,模拟二重套管的对数平均温差和有效总传热系数以便于工程设计计算。
3.
The logarithmic mean temperature difference and the integral mean temperature difference are analyzed in the optimum design of heat exchanger,the proposed approximate equations of logarithmic mean temperature difference in the literatures are discussed.
分析比较了在换热器的优化设计中,当流体的比热或传热系数随温度变化时的对数平均温差(LMTD)和积分平均温差计算方法;同时对有关文献中已提出的近似计算方法进行了讨论,指出 Chen JJJ 提出的近似公式最适用于换热器的优化设计。
5) Weight average
加权平均
1.
Extraction of event-related potentialusing weight average;
采用加权平均算法提取事件相关电位
6) weighted average
加权平均
1.
Generalization of weighted average intermediate theorem and its asymptotic property for intermediate point;
加权平均介值定理的推广及其介值点的渐近性
2.
A Weighted Average Decomposition Method of SDA Model and Its Application in Chinese Tertiary Industry Development;
SDA模型的加权平均分解法及在中国第三产业经济发展分析中的应用
3.
The research on the methodology of weighted average evaluation for surrounding rock stability of tunnel
煤巷围岩稳定性加权平均评价方法研究
补充资料:加权平均
分子式:
CAS号:
性质:在计算n个数x1,x2,…,xn的平均数时,如每个数在总量中所占的“重量”不同,则计算它们的平均数时就需考虑各个数的“重量”,如此得出的平均数称为加权平均。标志每个数x1在总量中所占“重量”的量称为每个数xl的权,记作p1(i=1,2,…,n)。加权平均一般指加权算术平均,设有n个数x1,x2,…,xn,各数的权分别为p1,p2,…,pn,则加权算术平均为。
CAS号:
性质:在计算n个数x1,x2,…,xn的平均数时,如每个数在总量中所占的“重量”不同,则计算它们的平均数时就需考虑各个数的“重量”,如此得出的平均数称为加权平均。标志每个数x1在总量中所占“重量”的量称为每个数xl的权,记作p1(i=1,2,…,n)。加权平均一般指加权算术平均,设有n个数x1,x2,…,xn,各数的权分别为p1,p2,…,pn,则加权算术平均为。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条