1) constrain downward
约束延拓
2) topological constraint
拓扑约束
1.
In this paper, the graph data model is introduced to represent the topological relation of pipeline network with respect to the complexity of pipeline network data, and the topological constraint condition is used to check the topological relation in order to keep the data correct.
针对管网数据的复杂性,提出利用图数据模型描述管网拓扑关系,并使用拓扑约束方法对管网数据一致性进行检测,以确保数据的正确性。
2.
The method solves respectively each problem as cthesified by the Seometric constraint and topological constraint.
该法根据各个图形元素间的几何约束和拓扑约束进行分类求解,采用逐点深入的方法对图形进行参数化处理,每实现一个尺寸的变化,整个图形都作相应的修改。
3.
Authors find some distance or angle constraints by analyzing the graph of topological constraints and then put them into geometric constraints.
先通过分析拓扑约束图,找到距离和角度约束,并将这些约束加入到其相应的几何约束中,然后通过分解找到子问题的临界参数值,再求解每个并列的参数区间内部的一个具体的实例,精确的参数范围就能够被确定。
3) topological constraints
拓扑约束
1.
Study of topological constraints solving for families of objects;
对象族拓扑约束求解的研究
4) delay constraint
时延约束
1.
Algorithms of QoS routing with bandwidth and delay constraints based on traffic engineering;
基于业务量工程带宽和时延约束的QoS路由算法
2.
11n under delay constraint,the average data quantity of one transmission with aggregation under non-ideal channel condition(when transmission error exists) is derived.
为了在非理想信道和给定时延约束下提高IEEE802。
3.
This paper presents a new algorithm STBMR for multicast routing with delay constraint.
多播路由已有广泛的应用,但满足时延约束而代价最小的多播路由算法复杂性很高。
5) delay-constrained
时延约束
1.
Study on the delay-constrained P2MP model in VPLS networks;
VPLS中具有时延约束的点到多点分组转发模型研究
2.
Study on the Delay-constrained Multicast Issue in VPLS Networks;
VPLS中具有时延约束机制的组播问题研究
3.
A Heuristic Algorithm for Delay-constrained Least-cost Unicast Routing;
一种时延约束最小代价路由选择算法
补充资料:拓扑结构(拓扑)
拓扑结构(拓扑)
topologies 1 structure (topology)
拓扑结构(拓扑)【t哪d哈eal structure(to和如罗);TO-no“orHtlec~cTpyKTypa」,开拓扑(oPen to和fogy),相应地,闭拓扑(closed topofogy) 集合X的一个子集族必(相应地居),满足下述J胜质: 1.集合x,以及空集叻,都是族。(相应地容)的元素. 2。(相应地2劝.。中有限个元素的交集(相应地,居中有限个元素的并集),以及已中任意多个元素的并集(相应地,居中任意多个元素的交集),都是该族中的元素. 在集合X上引进或定义了拓扑结构(简称拓扑),该集合就称为拓扑空间(topological sPace),其夕。素称为.l5(points),族份(相应地居)中元素称为这个拓扑空问的开(open)(相应地,闭(closed))集. 若X的子集族份或莎之一已经定义,并满足性质l及2。。(或相应地l及2衬,则另一个族可以对偶地定义为第一个集族中元素的补集族. fl .C .A二eKeaH及pos撰[补注1亦见拓扑学(zopolo群);拓扑空l’ed(toPo1O廖-c:,l印aee);一般拓扑学(general toPO】ogy).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条