说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 双曲多项式曲线
1)  hyperbolic polynomial curve
双曲多项式曲线
1.
Based on the basis functions,quadratic hyperbolic polynomial curves with multiple shape parameters are constructed.
基于这种基函数,建立了一种带多个形状参数的二次双曲多项式曲线,该类曲线对于非均匀节点为C1连续。
2)  hyperbolic polynomial B-spline curves
双曲多项式B样条曲线
3)  polynomial curve
多项式曲线
1.
This paper generated a concentration function combining Ficks second law of diffusion by means of polynomial curve,and developed FORTRAN program to calculate precisely the diffusion coefficient of every components.
利用多项式曲线拟合浓度函数 ,结合菲克扩散第二定律 ,编制了FORTRAN程序 ,快速准确地计算出了各组元的扩散系数。
2.
Ficks second law of diffusion by means of polynomial curve,and develops an efficient solver to calculate the diffusion coefficient of every component precisely.
利用多项式曲线拟合浓度函数 ,结合菲克扩散第二定律 ,编制 FORTRAN程序 ,快速准确地计算出各组元的扩散系数。
3.
A higher ordered polynomial curve is proposed in this paper, which is used as the return phase of the groove curve of guide cams to avoid soft shock at the return phase and inhibit vibration, shock and noise of cylindrical groove guide cam mechanisms.
本文提出采用高次多项式曲线作为导丝凸轮沟槽曲线的折回段,以消除凸轮两端折回处的柔性冲击,改善圆柱沟槽凸轮导丝机构的振动,冲击和噪声。
4)  polynomial curve and surface
多项式曲线曲面
5)  trigonometric/hyperbolic polynomial B spline curves
三角/双曲多项式B样条曲线
6)  trigonometric polynomial curve
三角多项式曲线
1.
The quadratic non-uniform trigonometric polynomial curve with multiple shape parameters is an extension to the same type with single shape parameter.
提出了一类带多个形状参数的二次非均匀三角多项式曲线,它是同类型单形状参数曲线的推广,具有二次非均匀B样条曲线的绝大多数性质。
2.
The control points of the trigonometric polynomial curves are computed by a set of the points {vm}mm,there is no need to solve a linear systems of a set of vector equations.
三角多项式曲线的控制点直接由插值点列计算产生,避免了求解方程组。
补充资料:B样条曲线


B样条曲线
B-spline curve

  B yangtiQO qUxlanB样条曲线(BsPline curve)用B样条函数构造的曲线。B样条函数在19世纪初首先由N.肠bachevsky提出。1946年,1.J.段hoenbe唱用B样条函数光滑统计数据,并提出B样条近似理论。1972年,deB刀r,M.Cox,L.Mal侣field等人发现了B样条函数的递归关系,1974年,C心rdon和Ri~-feld用B样条的递归性质构造了B样条曲线。它除保持了决对er曲线的直观性和凸包性等优点之外,还可以进行局部修改,且曲线更逼近特征多边形。同时,曲线的阶次也与顶点数无关,因而更方便灵活。由于以上原因,B样条曲线得到越来越广泛的应用。 参照3戈ier曲线公式,已知n十1个控制点尸、(i二0,1,…,n)为特征多边形的顶点,K阶(K一1次)B样条曲线的表达式是:c(。)=艺尸八,*(。),其中从,*(u)是B样条调和函数,也称之为B样条基函数,按照递归公式可定义为:Ni,1(u)={‘若“镇“蕊‘、·‘(O其它(1)从,*(u)_(u一t,)从,;一1(u) t£+无--一t乞十业生丝卫些型己上:亘全些 t£+走一ti+1 t*一1镇u(t,+i其中t‘是节点值,T=「t。,tl,…,t:+2*]构成了K阶B样条函数的节点矢量,其中的节点是非减序列,且L二n一k+1。当节点沿参数轴作均匀等距分布(即t泛十1一t*二常数)时,则为均匀B样条函数。当节点沿参数轴的分布不等距时,即(t,+1一t,)护常数时,则表示非均匀B样条函数。 B样条曲线有如下性质: (1)局部性k阶B样条曲线只被相邻的K个顶点所控制,而与其它顶点无关。图1所示是一条均匀B样条曲线。由图可见尸5变化时只对其中一段曲线有影响。 (2)连续性B样条曲线在t、(k+1(i毛n)处公*1,4(u)=Nl,4(u)只+NZ,;(u)只十1+ N3,4(u)只+:+N4,4(u)只+3故第i段三次B样条曲线(见图2)可写成:C£·4(u)一置妈,4(u)只·厂2PI+: 图2对应的矩阵式是三次B样条曲线111,|||11|刘 一++(1/6)[u3 3一3一63 03 41从21飞阵0}…p‘0{{只田比u任[0,1],i=1,2,…,n一2有Q重节点的连续性不低于(k一Q一l)阶。整条曲线C(u)的连续性不低于(k一Q~一l)阶,其中Q~是在区间(红,t,十1)内的最大重节点数。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条