说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 面积-地形因子曲线
1)  area-terrain factor curve
面积-地形因子曲线
2)  form factor of DTA curve
DTA曲线形状因子
3)  area curve
面积曲线
4)  Area under the curve
曲线面积
5)  surface pressure-molecular area curves
表面压力-分子面积曲线
6)  surface compressure-mean molecule area curve
表面压-分子面积曲线
补充资料:面积


面积
area

  面积l眼鱿皿用.旧队肠i 为某类平面图形(如多边形)指定的数值特征,它具有如下性质:j少面积非负;2)面积可加(对于多边形,这意味着若图形p日Q由两个没有公共内点的图形尸和Q组成.则面积叉p日Q)二面积P+面积Q);3)面积在位移下保持不变;4)单位正方形的面积为1.术语“面积”也在更一般的意义一F用作三维空间中二维曲面的数值特征、。维Euclid空间或R记mann空间中k(2簇k簇n)维曲面的数值特征以及集合的边界及其他对象的数值特征,见下述 平面图形的面积(area of a Planar figure).历史L最先被确定面积的是多边形类(即可分解为有限多个无公共内点的三角形的图形).重要的是在多边形类中具有性质l)一4)的面积是存在的并且唯一的({11,121)性质1)一4)的一个直接推论是.整个图形的面积不小于它的部分的面积 在古代假定f具有性质1)一勺的面积是存在且唯一的,但没有对该类图形作明确的描述;注意力集中在计算面积的方法仁矩形(包括边长为无理数的矩形)的面积公式是基于穷蝎法(exhaustion,methodof).三角形或多边形的面积是化为矩形面积来计算的,使这个矩形与给定的三角形或多边形是由同样的全等图形组成的.可以证明([21),任何面积相等的多边形可分解成相同的若干全等图形. 后来,一类叮求方(Jordan可测)的图形被区分r出来.若平面上一图形M,对任何‘>0,总存在多边形p和Q,使尹C一M仁Q,且(面积Q一面积p)<。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条