2) the indices of earthy shearing strength
土的抗剪强度指标
3) strength indexes of concrete
混凝土强度指标
4) intensity index
强度指标
1.
This paper introduces an experimental study on mechanical properties of self-compacting concrete,which include compressive strength,effect of specimen size,splitting tensile strength,maintain ages,flexible strength and the relationship between intensity index.
对自密实混凝土的力学性能进行了研究,探讨了自密实混凝土的抗压强度、抗压尺寸效应、劈拉强度、养护龄期、抗折强度以及各强度指标之间的关系。
2.
The test results show that the intensity index is strongly affected by water content of the expansive soil.
通过对陕南膨胀土在不同含水量下的直剪试验研究 ,结果表明膨胀土的含水量对其强度指标有着强烈的影响。
3.
The writer claims that,intensity index,which is classified into one of relativity indicators in all books of statistics,is paralled with relativity indicators.
长期以来 ,几乎所有的统计教科书都无一例外地将强度指标列为相对指标中的一种 ,笔者认为 ,强度指标不属于相对指标中的一种 ,它是独立于相对指标 ,与相对指标并列的综合指标中的一种独立类型。
5) strength index
强度指标
1.
Regularity of relation between structural parameter and strength indexes of unsaturated loess
非饱和黄土结构性参数与其强度指标关系初探
2.
Based on the influence of localization according to results of plane strain tests,the strength index was employed in the design of foundation pits.
本文根据平面应变不排水试验结果,考虑土体应变局部化的影响,将剪切带开始形成时的强度指标应用到基坑设计中。
3.
In order to give the best proportion of cement to fly-ash for coustructing cement-fly-ash stabilized crushed-stones pavement,through varying the proportion of cement to fly-ash while maintaining aggregate percentage and gradation,the variation law of mixture strength index with age is studied by experiment.
为了研究水泥粉煤灰稳定碎石混合料中水泥与粉煤灰的最优比例,通过集料含量和级配不变,只改变水泥与粉煤灰比例的方法,研究了不同配合比混合料强度指标随龄期的变化规律。
6) strength parameter
强度指标
1.
Model tests simulating the excavation of foundation pits were conducted to study the relationship between stress paths and strength parameters.
通过常规三轴压缩试验和减压三轴压缩试验分别获取土样在两种不同应力路径时的强度指标,分别用于计算模型试验支护结构上的水土压力,并与模型试验结果进行分析比较。
2.
Some aspects are analized in this paper,including the direction of failure surface,stress state prior to shear,stress path during shear,and stress reorienation,which influence the strength parameters for total stress analysis.
就破坏面方位、剪切前固结应力状态、剪切应力路径及主应力偏转对总应力强度指标的影响及解决的途径作了简要分析。
补充资料:土的强度
土在外力作用下达到屈服或破坏时的极限应力。由于剪应力对土的破坏起控制作用,所以土的强度通常是指它的抗剪强度。
确定强度的原则 土的强度一般是由它的应力-应变关系曲线上某些特征应力来确定的,如屈服应力、破坏应力(或峰值应力)等,这些特征应力值与土的种类和物理条件(如加载时间、加载速率和排水条件等)有关。在不考虑加载时间或加载速率对土强度影响的常规试验中,对于不同的土,大体上可获得三种典型的应力-应变关系曲线,一种是当应力随应变增大直至峰值时,土体出现破裂,随着应变进一步增大,应力由峰值逐渐降低,最后达到稳定应力值。对此,人们取峰值应力作为破坏强度,取最后稳定应力值作为破坏后的强度。第二种是当应力达到最大值后,应力虽然不增加,但应变继续增加,对此,也可取最大应力值作为破坏强度。第三种是,在较大应变下,应力仍未达到最大值,而是随应变继续增加,对此,一般取其线性段和非线性段的界限值作为屈服强度。上述的应力-应变曲线均是短期(几十分种或几小时)试验获得的,因此,曲线上的各种特征值均视为短期强度。但因工程寿命为几十年甚或更长时间,所以实际工程需确定长期强度。
强度理论 通过较简单的应力状态下的试验,确定土的强度,建立土的破坏准则(条件),以便能用于复杂的应力状态。常用的破坏准则有以下两种:
①莫尔-库仑破坏准则 实验证明,当材料中某一平面上的剪应力τf等于材料的抗剪强度S时,则材料发生破坏,且沿该面上的S值为同一平面上法向应力σn的函数,即
τf=S=f(σn),
(1)式(1)为一条曲线,称为莫尔强度包络线。古老的库仑理论假定,S是法向应力σn的线性函数,于是,式(1)简化为:
τf=S=C+σntgφ,
(2)式(2)称为莫尔-库仑破坏准则,包络线为直线。包络线与纵轴的截距C称为土的凝聚力;包络线的倾角φ称为土的内摩擦角;tgφ称为摩擦系数。
②库仑-泰尔扎吉破坏准则 K.泰尔扎吉(又译太沙基)根据有效应力原理提出,土的抗剪强度S或剪应力τf是与破坏面上的有效应力σe=(σ-σw)成线性关系的,因此,式(2)可写为:
S=τf=Ce+(σ-σw)tgφe
(3)式中,Ce和φe分别代表土的有效凝聚力和土的有效内摩擦角。
③斯肯普顿残余强度准则 英国 A.W.斯肯普顿于1964年提出残余强度的概念,在国际上普遍采用。他从许多硬粘土的滑坡实例中,发现超压密的硬粘土边坡在短期内往往是稳定的,但经过几年甚至几十年后,却发生了滑坡。据他推算的滑坡土体实有强度,远低于常规试验测得的峰值强度,而略大于大剪切变形下的强度。为了安全,他建议采用大剪切变形下的强度,作为土的残余强度值。他曾利用直剪仪进行反复剪切试验求得残余强度值。
④长期强度准则 实验证明,加载时间越长,强度越低,经历长时间的强度最低值,即长期强度。
强度测定方法 常用直剪仪或普通三轴压缩仪进行强度试验。前者是对于不同试样施加不同的法向应力σn,可得相应的不同强度,由此绘得强度包络线;后者是对不同试样分别施加不同的围压σ3,可得各个试样破坏时对应的轴向应力σ1,由此可绘得一组应力圆,连接诸圆的公切线,即强度包络线。
土的强度是分析计算地基及土工建筑物稳定性所必须的重要力学性质之一。对土的强度估计偏高或偏低,将直接影响工程的经济和安全。
参考书目
黄文熙主编:《土的工程性质》,水利电力出版社,北京,1983。
K.太沙基著,徐志英译:《理论土力学》,地质出版社,北京,1960。(K. Terzaghi, Theoretical SoilMechanics,John Wiley & Sons,New York,1943.)
确定强度的原则 土的强度一般是由它的应力-应变关系曲线上某些特征应力来确定的,如屈服应力、破坏应力(或峰值应力)等,这些特征应力值与土的种类和物理条件(如加载时间、加载速率和排水条件等)有关。在不考虑加载时间或加载速率对土强度影响的常规试验中,对于不同的土,大体上可获得三种典型的应力-应变关系曲线,一种是当应力随应变增大直至峰值时,土体出现破裂,随着应变进一步增大,应力由峰值逐渐降低,最后达到稳定应力值。对此,人们取峰值应力作为破坏强度,取最后稳定应力值作为破坏后的强度。第二种是当应力达到最大值后,应力虽然不增加,但应变继续增加,对此,也可取最大应力值作为破坏强度。第三种是,在较大应变下,应力仍未达到最大值,而是随应变继续增加,对此,一般取其线性段和非线性段的界限值作为屈服强度。上述的应力-应变曲线均是短期(几十分种或几小时)试验获得的,因此,曲线上的各种特征值均视为短期强度。但因工程寿命为几十年甚或更长时间,所以实际工程需确定长期强度。
强度理论 通过较简单的应力状态下的试验,确定土的强度,建立土的破坏准则(条件),以便能用于复杂的应力状态。常用的破坏准则有以下两种:
①莫尔-库仑破坏准则 实验证明,当材料中某一平面上的剪应力τf等于材料的抗剪强度S时,则材料发生破坏,且沿该面上的S值为同一平面上法向应力σn的函数,即
τf=S=f(σn),
(1)式(1)为一条曲线,称为莫尔强度包络线。古老的库仑理论假定,S是法向应力σn的线性函数,于是,式(1)简化为:
τf=S=C+σntgφ,
(2)式(2)称为莫尔-库仑破坏准则,包络线为直线。包络线与纵轴的截距C称为土的凝聚力;包络线的倾角φ称为土的内摩擦角;tgφ称为摩擦系数。
②库仑-泰尔扎吉破坏准则 K.泰尔扎吉(又译太沙基)根据有效应力原理提出,土的抗剪强度S或剪应力τf是与破坏面上的有效应力σe=(σ-σw)成线性关系的,因此,式(2)可写为:
S=τf=Ce+(σ-σw)tgφe
(3)式中,Ce和φe分别代表土的有效凝聚力和土的有效内摩擦角。
③斯肯普顿残余强度准则 英国 A.W.斯肯普顿于1964年提出残余强度的概念,在国际上普遍采用。他从许多硬粘土的滑坡实例中,发现超压密的硬粘土边坡在短期内往往是稳定的,但经过几年甚至几十年后,却发生了滑坡。据他推算的滑坡土体实有强度,远低于常规试验测得的峰值强度,而略大于大剪切变形下的强度。为了安全,他建议采用大剪切变形下的强度,作为土的残余强度值。他曾利用直剪仪进行反复剪切试验求得残余强度值。
④长期强度准则 实验证明,加载时间越长,强度越低,经历长时间的强度最低值,即长期强度。
强度测定方法 常用直剪仪或普通三轴压缩仪进行强度试验。前者是对于不同试样施加不同的法向应力σn,可得相应的不同强度,由此绘得强度包络线;后者是对不同试样分别施加不同的围压σ3,可得各个试样破坏时对应的轴向应力σ1,由此可绘得一组应力圆,连接诸圆的公切线,即强度包络线。
土的强度是分析计算地基及土工建筑物稳定性所必须的重要力学性质之一。对土的强度估计偏高或偏低,将直接影响工程的经济和安全。
参考书目
黄文熙主编:《土的工程性质》,水利电力出版社,北京,1983。
K.太沙基著,徐志英译:《理论土力学》,地质出版社,北京,1960。(K. Terzaghi, Theoretical SoilMechanics,John Wiley & Sons,New York,1943.)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条