1) ferrite-bainite steel
铁素体贝氏体钢
2) ferrite/bainite dual-phase steel
铁素体/贝氏体双相钢
1.
Deformation and fracture characteristics of ferrite/bainite dual-phase steels
铁素体/贝氏体双相钢的变形和断裂特性
2.
The effects of Si and Mn contents on microstructure,mechanical properties and formability of low carbon Si-Mn steels were studied,and the crack propagation of ferrite/bainite dual-phase steel was also investigated.
通过TMCP工艺实验,研究了Si、Mn含量对低碳Si-Mn钢显微组织、力学及成形性能的影响,探讨了铁素体/贝氏体双相钢(FB钢)在扩孔过程中的裂纹形成及扩展行为。
4) bainitic-acicular ferrite steel
贝氏体-针状铁素体钢
5) bainite ferrite
贝氏体铁素体
1.
Investigation of bainite ferrite nucleation mechanism;
贝氏体铁素体形核机理求索
2.
The microstructure and hardness were studied,showing that under the same cooling rate,the austenite phase transformation temperature decreased with increasing Nb content,while the microstructure was long slip bainite ferrite and its hardness was also increasing.
得出:在同一冷却速度下,随着含铌量的提高,过冷奥氏体连续冷却相变点降低,容易出现条片状贝氏体铁素体,显微硬度提高;在相同成分下,随着冷却速度的增加,含铌钢中铁素体越来越细小,由等轴状大块铁素体组织向条片状贝氏体铁素体转变。
3.
The results show that the austenite phase transformation temperature decreases with increasing Nb content under the same cooling rate,in the microstructure lath bainite ferrites appear and the hardness increases.
结果表明,在同一冷速下,随着Nb含量的增加,过冷奥氏体连续冷却相变点降低,组织中容易出现板条状贝氏体铁素体,显微硬度提高;在相同成分下,随着冷速的增加,含铌钢中铁素体越来越细小,由等轴大块铁素体组织向板条状贝氏体铁素体转变,显微硬度提高。
6) bainitic ferrite
贝氏体铁素体
1.
The observations by OM and TEM reveal that when undeformed austenite continuously cooled at 10 to 30℃/s,bainitic ferrite nucleated mainly at austenite grain boundaries,grown up like parallel lath into the bulk from the grain boundaries of austenite,and original austenite grain boundaries could be seen.
经OM和TEM观察表明,当未变形奥氏体以10~30℃/s连续冷却时,贝氏体铁素体优先在奥氏体晶界处形核,然后呈板条状从奥氏体晶界向晶内长大,并且可以从最终的组织看到原奥氏体晶界。
2.
The method of system science was used to study the nucleation and growth mechanism, substructure of bainitic ferrite, phase transformation dynamics.
运用试验与综合分析的方法,通过对贝氏体相变的形核、长大,贝氏体铁素体的亚结构、相变动力学的综合研究和分析,认为贝氏体相变机制具有过渡性,既非切变机制,也非台阶扩散机制,并提出了切变-扩散整合机制。
3.
The fine structural units and their size were different structural levels in the bainitic ferrite were determined by retained austenitic films.
透射电镜分析表明,贝氏体铁素体内有不同形貌、尺度的残余奥氏体膜存在,它们把贝氏体铁素体分割或包围为不同层次结构单元,以残余奥氏体膜为分界面确定了贝氏体铁素体不同层次的精细结构单元及尺度。
补充资料:低温铁素体钢
分子式:
CAS号:
性质:适合低温(273~153K)使用的低合金铁素体钢。它们在脆性转变温度以上使用。可为三类:(1)低碳-锰钢,如233K用钢16Mn属于此类;(2)低镍钢,在233~213K用0.5%Ni钢;当温度降至193~183K时,用2.25%Ni钢,或含锰的1.5%Ni钢;(3)无镍铬低温铁素体钢,主要有203K用钢09Mn2V及09MnTiCuRE,183K用钢06MnNb,153K用钢06AlCu和06AlNbCuN。低温铁素体钢主要用于液体丙烷与丙烯、液氨等液化气的储存及输送装置,寒冷地区野外作业的设备和工程结构以及一些冷冻设备等。
CAS号:
性质:适合低温(273~153K)使用的低合金铁素体钢。它们在脆性转变温度以上使用。可为三类:(1)低碳-锰钢,如233K用钢16Mn属于此类;(2)低镍钢,在233~213K用0.5%Ni钢;当温度降至193~183K时,用2.25%Ni钢,或含锰的1.5%Ni钢;(3)无镍铬低温铁素体钢,主要有203K用钢09Mn2V及09MnTiCuRE,183K用钢06MnNb,153K用钢06AlCu和06AlNbCuN。低温铁素体钢主要用于液体丙烷与丙烯、液氨等液化气的储存及输送装置,寒冷地区野外作业的设备和工程结构以及一些冷冻设备等。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条