1) three-step iterative method
三步迭代方法
2) three-step iterative algorithm
三步迭代算法
1.
A novel and innovative three-step iterative algorithm to compute approximate solution was constructed.
证明了此类集值强非线性混合变分不等式辅助问题解的存在性和唯一性;构建了一个新的三步迭代算法,通过辅助原理技巧,构建并计算此类非线性混合变分不等式的近似解,进一步证明非线性混合变分不等式解的存在性以及由算法产生的三个序列的收敛性。
3) asynchronous iteration approach
异步迭代方法
4) three-step iterations
三步迭代
1.
Xu and Noor had proved the theorem on convergence of three-step iterations for asymptotically nonexpansive mapping on nonempty closed,bounded,and convex subset of uniformly convex Banach space.
Xu和Norr已经证明了建立在一致凸Banach空间的一个非空有界闭凸子集上的渐进非扩张映射的三步迭代的收敛定理问题 。
5) Three-step predictor-corrector iterative method
三步预测-校正迭代法
6) m-step stationary iterative method
m步定常迭代方法
1.
A sort of m-step stationary iterative method is proposed to compute the unique positive definite solution and its convergence is proved.
给出了正定解的存在性定理,并且构造了求解的m步定常迭代方法,最后证明了该迭代法的收敛性。
补充资料:迭代算法
迭代算法
iteration algorithm
迭代算法〔i恤腼吨函d朋;HTep叫“ouH‘~p“仪] 由点到集合的一个映射序列A*所确定的递推算法,其中A*:V一V,V是一个拓扑空间,对于某初始点““任v,可依下式计算点列。“任V, 。“+,一注*。“,儿=o,l,·…(l)称算子(1)为迭代(i把mt沁n),而序列{。“}为迭代序列(itemti祀s叫uence). 迭代法(jtemtionn犯thod)(或迭代逼近法(me-thod of iterati记appro汕na石on”应用于求下面算子方程的解 通。”f,(2)即某泛函的极小值,求方程Au=又“的本征值和本征向量等,同时也用来证明这些问题解的存在性.如果对于一个初始近似。。,当k一的时:‘~。,则称迭代方法(l)收敛到问题的解u. 求解(2)的线性度量空间V上的算子A*一般由下式构造 注*况几=。七一H*(A。友一f),(3)其中{H*二V~V}是由某迭代型方法所确定的算子序列.压缩映射原理(c ontraCting .n分pp吨pnn-ciPle)及真摧户,’或著向题的泛函变分极小化方法都是建立在构造形如(l),(3)的迭代法基础之上.所使用的构造A七的各种方法有Newton法(Newton脸thod)或下降法(d留cent,n祀th(记of)的诸多变形.人们尝试选取H*使得在一定条件下。止~u的快速收敛得到保证,这些条件要求计算机存储空间确定后算子A*u六的数值实现充分简单,有尽可能低的复杂性而且数值稳定.求解线性问题的迭代法得到了很好的发展和深人的研究.该迭代法这里分为线性与非线性两大类.Ga.法(Ga璐nr目兀心),Sd翻法(Sei-delrr℃th司),逐次超松弛法(见松弛法(侧公爪沁n1优thod))和带有tle氏皿eB参数的迭代法属于线性方法;变分法(如最速下降法,共扼梯度法和极小偏差法(mi曲nal discrepancyn坦thod))等.见最速下降法(s吹p巴t把ceni,皿thi对of);共扼梯度法(eonju,te脚dients,此山记of)属于非线性方法.最有效的迭代法之一是使用tIe玩IIDeB参数(Che勿shevP~t-ers),这里A是一个带有〔。,M』上谱的自相伴算子,M>m>0.这个方法提供了关于预先指定的第n步收敛性最优(对谱边界上的给定信息)估计.方法可描述为 “‘+’=“一“*十1(通。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条