1) lattice congruence
格同余
1.
Moreover,the result that the congruence is the least distributive lattice congruence is proved.
文章主要借助文献[3]中的方法,定义交换分配半环上的一个同余,并且验证该同余是最小分配格同余。
2) S-lattices congruence
S-格同余
1.
The act of an ordered semigroup on a poset is extended into a lattice ordered semigroup on a lattice;the notion of S-lattices is introduced;and the properties of S-lattices congruence and S-lattices morphism are discussed to develop the representation theorems of lattice ordered semigroups.
将序半群在偏序集上的作用推广到格半群在格上的作用,提出了S-格的定义并讨论了S-格同态和S-格同余的性质,得到了格半群的表示定理。
3) congruence lattice
同余格
1.
In this paper,we investigate the relation of congruence lattices on semirng R and fractional semiring S-1TR.
讨论了半环R上的同余格与分式半环S-T1R上的同余格之间的关系,得到R上的同余格可嵌入到ST-1R上的同余格中的结论。
2.
Four operators K,k,T and t are defined on the congruence lattice C(S) on a regular semigroup S as follows,for ρ∈S,ρK and ρk(ρT and ρt) are the greatest and the smallest congruences with the same kernel(trace) as ρ,respectively.
正则半群S的同余格C(S)上的算子K、k、T和t定义如下,对于ρ∈S,ρK和ρk(ρT和ρt)分别是与ρ有相同核(迹)的最大和最小同余。
3.
Two complete congruences on the congruence lattices of regular semigroups with Q-inverse transversals are analysed.
研究了具有Q-逆断面的正则半群上的同余格Con(S)上的等价关系W和Q,它们都是Con(S)上的完全同余,这些完全同余的每一个类是区间,给出了每一个类的极大、极小同余的表示。
4) lattice of congruences
同余格
1.
It is discussed the lattice of congruences on a regular semigroup generated by the congruences generated by Green s relations.
讨论正则半群上与格林关系有关的同余生成的格,研究这个格的Hasse图的几种退化情形,然后确定逆半群和两类特殊的完全正则半群上与格林关系有关的同余所生成的同余格。
5) good congruence lattice
好同余格
1.
Furthermore, the meet and the join for the good congruence lattice are determined for the semilattice of commutative cancellative monoids.
特别是确定了交换的可消幺半群的半格的好同余格上的交与并运算。
6) Semilattice congruence
半格同余
补充资料:余佛同
【余佛同】
谓如来遍前九类微尘刹海,常演斯法,调伏众生,令归性海。一佛既尔,余十方佛,亦复如是。遍诸刹海,恒演斯法。故云余佛同。
谓如来遍前九类微尘刹海,常演斯法,调伏众生,令归性海。一佛既尔,余十方佛,亦复如是。遍诸刹海,恒演斯法。故云余佛同。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条