1) zero order optimizing
零阶优化
1.
Carrying out an automatic optimum designs to the hook by the/OPT module of ANSYS itself and the zero order optimizing method of ANSYS providing.
利用ANSYS自带的/OPT优化模块及ANSYS提供的零阶优化方法,对一种铁水罐倾翻吊钩进行结构优化设计。
2) Zero order optimization algorithm
零阶优化算法
3) Subproblem approximation optimization
零阶近似优化
4) zero orderization
零阶化
5) hierarchical optimization
递阶优化
1.
Model of iron & steel enterprises group strategy production scheduling & planning based on theory of hierarchical optimization;
基于递阶优化的钢铁企业集团战略排产计划模型研究
2.
The fire distribution of different kinds of anti-aircraft missile s fire cell in aerial defence is analyzed under the optimal target distribution tactic,and a model is established to solve the problem of hierarchical optimization.
借助兵力交换的思想,从宏观层次上研究不同类型的防空导弹火力单元对空中目标的优化分配问题;分析在最优目标分配策略下区域防空中各类型防空导弹火力单元的火力分配问题,并建立了递阶优化的求解模型。
3.
To deal with the optimization control problem for large-scale systems using Hopfield network which easily converges local optimal solutions,hierarchical optimization network algorithm based on TCNN is proposed.
针对基于 Hopfield 优化网络的大系统优化控制算法易陷入局部最优值而无法得到全局最优值的问题,利用暂态混沌神经网络比 Hopfield 网络更为丰富的动力学特性,提出一种基于 TCNN 的递阶优化网络算法,此网络提高了对大系统稳态优化控制问题全局最优值搜索的能力。
补充资料:计算算法的最优化
计算算法的最优化
ptimization of computational algorifans
计算算法的最优化【。洲咧匕6阅ofc咖例。柱.目习子时-d,”6;onT一Mo3a双,Ra,一eju.Teju.II.叱a几r0P盆n陇o,1 在求解应用问题或精心设计标准程序系统时最优计算算法(comPutatio几al algorithm)的选择.当解决一个具体间题时,最优策略可能不会使解法最优化,可是为优化一个标准程序或应用最简单的解法编制程序则是很直截了当的. 计算算法的最优化问题的理论提法是基于下述原则.当选择一种方法来求解一个问题时,研究人员关心的是某些特性,而且根据这些特性来选择算法,同时这个算法也能用来解决具有这些特性的其他问题.据此,在算法的理论研究中,人们引人了具有特殊性质的一类问题尸.当选择一种解法时,研究人员有一组解法M可供选用.当选用一种方法m来求解一个问题p时,得到的解会有一定的误差e(p,m).称量 E(P,m)=sllp}。(p,m)I P‘P为在这类问题P中方法m的误差(en刀r of the nrth-od),同时,称量 E(p,M)一惑E(p,m)为M中方法在尸中误差的最优估计(。Ptimal estirnateof the error).如果存在一种方法,使得 E(P,m。)=E(P,M),那么称这个方法为最优的(optirnal).研究计算算法最优化问题的一个方案可以追溯到A .H .KQJLMoropoB(【2」),所考虑的是计算积分 1 ‘(f)一Jf(x)dx 0问题的集合,给定的条件是}f(时}成A,其中M是所有可能求积 N ‘(f)澎,万:C,f(x,)的集合·每一种求积由总数为ZN的cj和礼确定.由具有所需精度的某函数类重新生成一个函数所需要的最小信息量(见【2],「31)也可以包含在这个方案中.这个问题的一个更详细的阐述可查阅【4],它指出在特定意义下实现算法的工作量与应用的存储量同样大.最优算法仅对极少数类型问题存在(汇1」),然而,对大量计算问题,已经建立了就其渐近特性而言几乎是最优的方法(见汇5]一【8」). 对某类问题最优的计算算法特性的研究工作(见15],【71)包含两部分:建立其特性尽可能好的具体解法,和根据计算算法的特性得出估计量(见【2]一【4],【9】).实质上,问题的第一部分是数值方法理论的一个基本问题,而且在大多数情况下它是与最优化问题无关的研究工作.下面得到的估计通常归结为对£摘(。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条