说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 红外波谱
1)  infrared spectroscopy (IR)
红外波谱
2)  nearinfrared spectroscopy(NIR)
近红外波谱
3)  long wavelength near infrared spectrometry
长波近红外光谱
4)  FSIR technolgoy
全波谱红外技术
5)  short-wavelength near-infrared spectroscopy
短波近红外光谱
1.
The short-wavelength near-infrared spectroscopy and multivariate calibration were used for the rapid and accurate determination of etchanol in wines.
使用短波近红外光谱和多变量校正技术快速准确地测定酒中乙醇含量,研究了纯水、乙醇以及乙醇和水混合体系的光谱特征。
6)  airborne short-wave infrared split spectral remote sensing
航空短波红外分光谱
补充资料:近红外

现代近红外光谱(nir)分析技术是近年来分析化学领域迅猛发展的高新分析技术,越来越引起国内外分析专家的注目,在分析化学领域被誉为分析“巨人”,它的出现可以说带来了又一次分析技术的革命。

近红外区域是人们最早发现的非可见光区域。但由于物质在该谱区的倍频和合频吸收信号弱,谱带重叠,解析复杂,受当时的技术水平限制,近红外光谱“沉睡” 了近一个半世纪。直到20世纪60年代,随着商品化仪器的出现及norris等人所做的大量工作,提出物质的含量与近红外区内多个不同的波长点吸收峰呈线性关系的理论,并利用nir漫反射技术测定了农产品中的水分、蛋白、脂肪等成分,才使得近红外光谱技术曾经在农副产品分析中得到广泛应用。到60年代中后期,随着各种新的分析技术的出现,加之经典近红外光谱分析技术暴露出的灵敏度低、抗干扰性差的弱点,使人们淡漠了该技术在分析测试中的应用,此后,近红外光谱进入了一个沉默的时期。70年代产生的化学计量学(chemometrics)学科的重要组成部分——多元校正技术在光谱分析中的成功应用,促进了近红外光谱技术的推广。到80年代后期,随着计算机技术的迅速发展,带动了分析仪器的数字化和化学计量学的发展,通过化学计量学方法在解决光谱信息提取和背景干扰方面取得的良好效果,加之近红外光谱在测样技术上所独有的特点,使人们重新认识了近红外光谱的价值,近红外光谱在各领域中的应用研究陆续展开。进入90年代,近红外光谱在工业领域中的应用全面展开,有关近红外光谱的研究及应用文献几乎呈指数增长,成为发展最快、最引人注目的一门独立的分析技术。由于近红外光在常规光纤中具有良好的传输特性,使近红外光谱在在线分析领域也得到了很好的应用,并取得良好的社会效益和经济效益,从此近红外光谱技术进入一个快速发展的新时期。

近红外光谱分析原理

近红外光(near infrared,nir)是介于可见光(vis)和中红外光(mir)之间的电磁波,按astm(美国试验和材料检测协会)定义是指波长在780~2526nm范围内的电磁波,习惯上又将近红外区划分为近红外短波(780~1100nm)和近红外长波(1100~2526nm)两个区域。

近红外光谱属于分子振动光谱的倍频和主频吸收光谱,主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,具有较强的穿透能力。近红外光主要是对含氢基团x-h(x=c、n、o)振动的倍频和合频吸收,其中包含了大多数类型有机化合物的组成和分子结构的信息。由于不同的有机物含有不同的基团,不同的基团有不同的能级,不同的基团和同一基团在不同物理化学环境中对近红外光的吸收波长都有明显差别,且吸收系数小,发热少,因此近红外光谱可作为获取信息的一种有效的载体。近红外光照射时,频率相同的光线和基团将发生共振现象,光的能量通过分子偶极矩的变化传递给分子;而近红外光的频率和样品的振动频率不相同,该频率的红外光就不会被吸收。因此,选用连续改变频率的近红外光照射某样品时, 由于试样对不同频率近红外光的选择性吸收,通过试样后的近红外光线在某些波长范围内会变弱,透射出来的红外光线就携带有机物组分和结构的信息。通过检测器分析透射或反射光线的光密度, 就可以确定该组分的含量。

近红外光谱分析技术包括定性分析和定量分析,定性分析的目的是确定物质的组成与结构,而定量分析则是为了确定物质中某些组分的含量或是物质的品质属性的值。与常用的化学分析方法不同,近红外光谱分析法是一种间接分析技术,是用统计的方法在样品待测属性值与近红外光谱数据之间建立一个关联模型(或称校正模型,calibration model)。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条