1) Rayleigh beam
Rayleigh梁方程
1.
First,it is established that the regularity of the solution of the Rayleigh beam equation via the method of linear operator semigroup and lifting result[9].
先用算子半群方法和提升结果[9]建立了Rayleigh梁方程解的正则性;再用Hilbert唯一性方法结合Diophantine逼近理论的某些结果得到了系统的精确L2-能控性。
2) Rayleigh equation
Rayleigh方程
1.
The periodic solutions of a kind of Rayleigh equations;
一类Rayleigh方程的周期解
2.
The paper employs an abstract continuous theorem of k-set contractive operator to study the existence of periodic solution of a type Rayleigh equation with complex deviating argument.
利用k-集压缩算子拓扑度抽象连续定理,研究了一类具复杂偏差变元的Rayleigh方程周期解的存在性,并获得了此类方程周期解存在的充分条件。
3.
This paper study the existence of periodic solution of Rayleigh equation with a deviating argument by Mawhin s continuation theorem,and some new results are obtained.
利用Mawhin连续性定理研究了一类具有偏差变元的Rayleigh方程周期解的存在性,得到了一些新的结果。
3) Rayleigh equation
Rayleigh型方程
4) Rayleigh Wave eguation
Rayleigh波方程
5) Rayleigh-Plesset equation
Rayleigh-Plesset方程
1.
Cavitation source term is derived from the generalized Rayleigh-Plesset equation to take into account the historical effect and unstable characteristics of bubble development.
该文对Singhal完全空化模型进行改进,从统计上描述微观气核的力学行为以得到空化流场宏观物理量的分布,在求解完整的Rayleigh-Plesset方程的基础上构造空化源项,以考虑空化气核发展的历史效应和非定常特性,效果很好。
2.
According to the characteristics that a laser induced bubble is filled with mostly water vapor and a little noncondensable gas,a specific Rayleigh-Plesset equation which was used to determine the position of the dynamic bubble wall and other concerned conditions were used.
基于激光空泡内物质以水蒸气为主的特征,选择特定的Rayleigh-Plesset方程形式,确定激光空泡的动态泡壁位置,并考虑水中气体与激光空泡之间的质量扩散、水蒸气的凝结与蒸发、水的压缩性及热传导、声辐射、黏性、表面张力等因素。
3.
Combined with Runge-Kutta-Fehlberg Method and three methods(Isothermal Model,Adiabatic Model and Conduction-Radiation Method),Rayleigh-Plesset equation was solved.
结合Runge-Kutta-Fe-hlberg法,利用3个数值分析模型(等温模型、绝热模型和热传导-热辐射模型)求解了描述空泡发育和溃灭过程的Rayleigh-Plesset方程,并将数值计算结果与不同研究人员所得到的试验结果进行了比较。
6) Rayleigh Integral Equation
Rayleigh积分方程
补充资料:[3-(aminosulfonyl)-4-chloro-N-(2.3-dihydro-2-methyl-1H-indol-1-yl)benzamide]
分子式:C16H16ClN3O3S
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条