1) non-inertia system
非惯性系统
2) non-inertial system
非惯性系
1.
In this paper,previous research about the dynamic systems in non-inertial system,including methods of establishing dynamics equations are reviewed.
综述了近几十年来国内外学者对非惯性系动力学方面的研究情况,以及对非惯性系动力学的实际应用情况。
2.
This paper,on the basis of motion kinetics equation,after considering the inertial force,infers the theorem of kinetic energy in non-inertial system.
从质点组相对运动动力学方程出发,考虑每个质点受到的惯性力,推导出非惯性系的动能定理,并在此基础上对机械能守恒进行研究,给出了惯性力为保守力的条件。
3) non inertial reference frame
非惯性系
1.
Principle of d′Alembert Lagrange for a system relative to a non inertial reference frame and non isochronal variation is first presented.
本文研究了单面非完整系统相对于非惯性系的 Noether定理及逆定理。
2.
Firstly, this paper presents the D Alembert Lagrange principle of relative to non inertial reference frame in the event space.
给出了事件空间中相对于非惯性系的D'AlembertLagrange原理,讨论了基于该原理在无限小变换群作用下的不变性,得到了事件空间中非完整系统相对于非惯性系的守恒律,并举例说明了结果的应用情况参1
4) noninertial reference frame
非惯性系
1.
This paper studies Lie symmetries and coserved quantities of holonomic systems with unilateral constraints relative to noninertial reference frame.
研究单元完整系统相对于非惯性系的 Lie对称性与守恒量。
2.
Routh and Chaplygin equations for variable mass nonlinear nonholonomic system in noninertial reference frame are extended,and the cyclic integral and its condition of existence for the system are given.
建立了变质量非线性非完整系统相对于非惯性系的广义Routh方程和广义方程,给出了其循环积分存在的条件,并利用循环积分将这类系统的Routh方程和方程降阶,得到更广泛一类的广义Routh方程和型广义Routh方程。
3.
In this paper, the D Alembert-Lagrange principle and the generalized chaplygin s equation for variable mass weakly nonholonomio systems moving relative to noninertial reference frame are established at first, and then the generalized energy integral and the generalized cyclic integral of the dynamical equations in the case of one-order approximation for the systems above are studied and presented.
本文首先建立了变质量弱非完整系统相对于非惯性系运动的D,Alembert-Lagrange原理和广义型方程,然后,研究并给出了变质量弱非完整系统相对于非惯性系运动的动力学方程在一阶近似情况下的广义循环积分和广义能量积分。
5) noninertial frame
非惯性系
1.
Lagrange equation in noninertial frame and application;
非惯性系中的Lagrange方程及其应用
2.
A new type of differential equation for dynamics of noblinear nonholonomic mechanical systems relative to noninertial frame is presented by constructing generalized noninertial potential functions.
本文通过构造广义非惯性势函数,给出了非线性非完整力学系统相对于非惯性系的新型动力学微分方程。
3.
In this paper,the generalized equations of variable mass for high-order nonholonomic mechanical system in noninertial frame are de- rived by the universal D Alembert s principle and an example is given to illustrate the application of these equations.
本文由万有D'Alembert 原理导出变质量高阶非完整系统相对于非惯性系的广义方程,并举例说明其应用。
6) Noninertial system
非惯性系
1.
The relative balance in noninertial system can also be coped with by the method of analytical statics.
非惯性系中的相对平衡问题 ,除矢量力学方法外 ,还可用非惯性系分析静力学方法处
2.
Having introduced the concept of equal effect-potential energy of intertialthis paper also the discusses tbe condition of mechanical energy conervation in noninertial system.
根据质点相对运动动力学方程推导了在非惯性系中质点的动能定理,在引入惯性力的等效势能概念后,讨论了在非惯性系中质点机械能守恒的条件。
3.
This article infers the theorem of kinetic energy of the system of particles in noninertial system and analyses the requirement of the conservation of mechanical energy of the system of particles in noninertial system.
本文推导出非惯性系中质点组的动能定理,并分析非惯性系中质点组的机械能守恒条件,介绍非惯性系中应用机械能守恒解决动力学问题的方法。
补充资料:非惯性参照系
见惯性参照系。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条