1) weak Morrey-Herz space
弱Morrey-Herz空间
1.
In this paper,the authors prove the boundedness of the Caldero\'n-Zygmund operator in the weak Morrey-Herz spaces on homogeneous spaces.
证明了Caldero\'n-Zygmund算子在齐型空间中弱Morrey-Herz空间的有界性。
2) weak Herz-Morrey spaces
弱Herz-Morrey空间
3) weighted weak Herz-Morrey spaces
加权弱Herz-Morrey空间
4) Morrey-Herz space
Morrey-Herz空间
1.
Under the inspiration of the definitions of Morrey space and Herz spaces, we have the Morrey-Herz spaces.
在Morrey空间、Herz空间的定义启发下,我们知道有Morrey-Herz空间的概念。
2.
Using the relation between homogeneous Morrey-Herz spaces MK·α,λp,q(Rnn) and homogeneous Herz spaces K·α,pq(Rnn),some results on K·α,pq(Rnn) were extended.
利用齐次Morrey-Herz空间MK。
5) Herz-Morrey spaces
Herz-Morrey空间
1.
The boundedness on Herz-Morrey spaces is established for a class of Marcinkiewicz integral commutators generated by BMO(Rn) function and Marcinkiewicz integrals with rough kernels.
建立了一类具有粗糙核的Marcinkiewicz积分交换子在齐型Herz-Morrey空间上的有界性。
2.
The authors introduce some Herz-Morrey spaces on spaces of homogeneous type, which are the generalizations of the Herz spaces and the classical Morrey spaces.
在齐型空间上定义了 Herz-Morrey空间 ,并研究了某些次线性算子在 Herz-Morrey空间上的有界
6) Herz-Morrey space
Herz-Morrey空间
1.
Boundedness of commutators on Herz-Morrey spaces;
Herz-Morrey空间上的交换子
2.
Boundedness of sublinear operators on Herz-Morrey spaces;
次线性算子在Herz-Morrey空间上的有界性
3.
Boundedness of multilinear Calderón-Zygmund singular integral operators on Herz-Morrey spaces
多线性Calderón-Zygmund在Herz-Morrey空间上的有界性
补充资料:弱无穷维空间
弱无穷维空间
weakly infinite-dimensional space
弱无穷维空间〔we刹y词训te~‘n犯‘田‘匆,ce;cJIa606ec劝。e,。oMepooen一ocTpaHc,」 一个拓扑空间(topologjcal sPace)X,使得对其闭子集偶对的任意无穷系(A,,B‘), A,自B,=沪,i=1,2,…,存在(A与B;之间的)分划(Partition)C,,满足自c=必.不是弱无穷维的无穷维空间称为强无穷维(strongly inl训te dinle比ional)空间.弱无穷维空间也称为A弱无穷维(A一weakly沉肋ited由℃nsional)空间.若在上述定义中,进一步要求c,的某有限子族有空的交集,就得出S弱无穷维空间(S一weak】y顾-nite .dinlensio耐sPace)的概念.【补注】除上述外,A弱就是AneKcaHJIpoB弱(Akk-san山{。vweakly),S弱就是CM即HoB弱(Snurnovweakly).还有一种已经弃之不用的概念Hurewicz弱无穷维空间(Hurewicz一wea脚infin讹一山住r朋io耐space),见综述[AI], 为避免“无穷维空间”这个词的混乱,空间X要求可度量化,见【A2].
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条