1) Regular M-crossing Tree
正则m-叉树
1.
We survey the reduction formula of characteristic polynomial of Regular M-crossing Tree and obtain which Regular M-crossing Tree become the Integral Graph condition.
本文主要是研究正则m-叉树特征多项式的递推公式,并通过其递推公式来得出正则m-叉树成为整图的条件。
2) regular m-furcating tree
正则m叉树
1.
For a regular m-furcating tree, the authors derive a recurrence formula of the number of its S(n)= {Ki: 1<i<n}-factor through analysing the relation among i,t and m of sub-furcating trees.
在正则m叉树T中,删除K2及端点关联边,通过所得子正则m叉树中分枝点、叶数和m之间内在联系,本文导出正则m叉树T的S~(m)={Ki:1≤i≤n}-因子数递归公式。
3) triple fork tree
正则三叉树
1.
A generation algorithm of fractal 3D graphics based on L system was presented and the fractal 3D tree based on L system was implemented with triple fork tree model.
介绍了分形的概念及其特性,论述了L系统的作图原理,在此基础上提出了一种基于L系统的三维分形生成算法,利用正则三叉树模型实现了基于L系统的三维分形树的生成。
4) the standard B-tree
正则二叉树
5) binary regular tree
二叉正则树
6) m_ary Tree
m叉树
补充资料:1-羟基-3-(甲基正戊胺基)-丙叉-1,1-双膦酸
分子式:C9H25O7NP2
分子量:319.23
CAS号:114084-78-5
性质:
分子量:319.23
CAS号:114084-78-5
性质:
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条