1) topology switching sequence method
拓扑切换序列方法
2) topological sequence
拓扑序列
1.
Activity on vertex network(AOV network)can present orders of all sub_-engineerings of one engineering,use topotogical sort algorithm to work out the linear sequence of all sub_-engineerings called topological sequence.
以顶点表示活动的网络(AOV网)可用来表示整个工程中各个子工程的先后次序制约关系,利用拓扑排序算法能求得子工程的线性序列———拓扑序列。
3) Switching topology
切换拓扑
4) topological sequence entropy
拓扑序列熵
1.
(X,T) is topo-null if (X,T) has zero topological sequence entropy.
如果系统(X,T)具有零拓扑序列熵,则它称为拓扑-null的。
2.
In this paper,the commutativity on topological sequence entropy of graph maps is discussed.
主要研究图上连续自映射拓扑序列熵的可交换性,证明了对任意无界的正整数递增序列A=(a_i)_(i=1)~∞和任意的连续图映射f,g都有h_A(fog)=h_A(gof)。
3.
The topological sequence entropy of entA(f) is not entirely defined the property,due to increasing the positive integer sequence of the A={ai}∞i=1.
ent(f),对于由递增的正整数序列A={ai}i∞=1所确定的en tA(f)的拓扑序列熵不完全具有此类性质。
6) topological order sequence
拓扑有序序列
1.
It takes the precondition in courses in altitude academy as directed acyclic graph and takes the problem of selecting course as searching topological order sequence in directed acyclic graph.
提出了有向图顶点拓扑有序序列的概念 ,给出了有向图存在拓扑有序序列的充要条件 。
补充资料:拓扑结构(拓扑)
拓扑结构(拓扑)
topologies 1 structure (topology)
拓扑结构(拓扑)【t哪d哈eal structure(to和如罗);TO-no“orHtlec~cTpyKTypa」,开拓扑(oPen to和fogy),相应地,闭拓扑(closed topofogy) 集合X的一个子集族必(相应地居),满足下述J胜质: 1.集合x,以及空集叻,都是族。(相应地容)的元素. 2。(相应地2劝.。中有限个元素的交集(相应地,居中有限个元素的并集),以及已中任意多个元素的并集(相应地,居中任意多个元素的交集),都是该族中的元素. 在集合X上引进或定义了拓扑结构(简称拓扑),该集合就称为拓扑空间(topological sPace),其夕。素称为.l5(points),族份(相应地居)中元素称为这个拓扑空问的开(open)(相应地,闭(closed))集. 若X的子集族份或莎之一已经定义,并满足性质l及2。。(或相应地l及2衬,则另一个族可以对偶地定义为第一个集族中元素的补集族. fl .C .A二eKeaH及pos撰[补注1亦见拓扑学(zopolo群);拓扑空l’ed(toPo1O廖-c:,l印aee);一般拓扑学(general toPO】ogy).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条