1) mixture model of probability density
混合概率密度模型
2) probability density model
概率密度模型
1.
EM is one of the popular algorithms for parameters estimation of Gaussian mixture probability density model.
常用的混合高斯概率密度模型参数估计方法是EM迭代算法,但这种算法的主要缺点是估计精度过分依赖于初始值。
3) Mixture probabilistic model
混合概率模型
1.
In this paper we describe a theoretically rigorous algorithm for discretization of continuous attributes based on mixture probabilistic models.
基于混合概率模型 ,该文提出了一种理论严格的无监督离散化算法 ,它能够在无先验知识、无类别属性的前提下 ,将数值属性的值域划分为若干子区间 ,再通过贝叶斯信息准则自动地寻求最佳的子区间数目和区间划分方
4) the Beta PDF subgrid-scale NO formation model
联合概率密度函数亚网格模型
5) second order moment PDF model
二阶矩概率密度模型
6) equivalent probability density error model
等概率密度误差模型
1.
The concept named the equivalent probability density error model(Tepdem) is brought forward.
基于数值分析、经典概率论和线状实体误差分布机理,定义了矢量GIS平面一般曲线等概率密度误差模型的概念,提出了平面一般曲线等概率密度误差模型尺度因子的概念和确定方法,结合平面一般曲线落入其相应等概率密度误差模型内的概率算法和概率置信水平,确定了尺度因子的具体数值,给出了平面一般曲线等概率密度误差模型的形状与规模。
补充资料:概率分布的密度
概率分布的密度
density of a probability distribution
概率分布的密度【山画勿ofa声加b正ty业州恤心.;n月。T:oeT‘,.TooeT,],亦称攀半考枣(pro恤b正tydensity) 与绝对连续概率测度相对应的分布函数(distribU-tionft川ction)的导数. 设X是在”维E切土d空间R”(n)l)中取值的随机向量,F是它的分布函数,并设存在一个非负函数f使得 x一工.F(x,,xZ,…,x。)一J…J,(。:,…,。。)“1…du,对一切实数x;,…,、。成立,则称f是X的修率窜摩(probab皿ity de飞ity),此时对任意BOrel集A cR“有 p万x。A飞=f…ff(。,.·…。_)du一d、. ‘A。任一满足条件 丁…Jf‘xl,一x·,dxl·““一‘的非负可积函数f都是某一随机向量的概率密度. 如果两个取值于R”的分别具有概率密度f和g的随机向量X和Y是独立的,那么随机向量X十Y具有概率密度h,它是f和g的卷积,即h(xl,…,x。)=一丁…丁f(x,一。,,…,x。一u。)。(。,,…,。。)以u,…J、一J…Jf(“,,…,。。)。(x,一,,…,x。一、)汉。,…d。。. 假设X=(戈,…,戈)和Y=(矶,…,气)是分别取值于R”和R用(n,m)l)中且具有概率密度f和夕的随机向量,而z=(戈,…戈,Y.,…,气)是取值于r+川中的随机向量.再若X和y独立,则Z具有概率密度h,称为随机向量X和Y的联合概率密度(joint Pro恤biljty dellsity),此处h(t:,…,t。十。)=f(tl,…,t。)g(t。+1,…,t。*.)·(l)反之,若Z具有满足(l)的概率密度,则X和Y独立. 具有概率密度f的随机向量X的特征函数中可表示为 毋(tl,…,t。)= 一丁…丁。:‘!1二‘~“·’·,f(xl,一x。,dxl·‘·“x二这里,如果职是绝对可积的,则f是有界连续函数,且 f(x:,“·,x。)=二二头二f二卜一‘:1一‘,…’,(。:,…,:。)d才,…d。· (2二)”几或概率密度f和对应的特征函数价还通过下述关系式(Phnd犯rel埠等术(Phncherel汕mtity))相联系:函数厂是可积的,当且仅当!叫’是可积的,此时有 了…歹fZ(x卫,…,、)dx,…dx。 一典丁了…}’,,(。,,…,:。)一‘tl…己t。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条