1) IUKF(Iterated Unscented Kalman Filter)
迭代采样卡尔曼滤波
2) iterative Kalman filter
迭代卡尔曼滤波
1.
The adaptive iterative Kalman filter based on the technique of U-D decomposition,which adapts to the mechanical acceleration mean adaptive algorithm,is designed to solve the high non-linearity of the subsystem of DR and decrease the loss of linearization yielded by Extend Kalman Filter.
结合全球定位系统(GPS)和航位推算(DR)两种定位方式的优点,构建了基于卡尔曼滤波的自适应联邦滤波算法,实现陆地GPS/DR组合定位系统的数据融合;针对DR子系统的强非线性和扩展卡尔曼滤波算法带来的较大线性化损失,并结合机动加速度均值自适应算法,设计了一种基于U-D分解的自适应迭代卡尔曼滤波算法,更有效的减少DR子系统线性化带来的误差损失,提高定位精度;与同仿真环境下,DR子系统采用扩展卡尔曼滤波方法作了比较,结果表明该信息融合算法能更有效解决DR子系统的线性化误差问题,整个系统数据融合精度更高。
2.
In the modification stage,iterative Kalman filter is adopted to optimize the mean and variance of the state distribution which are obtained in the prediction stage.
该算法在预测时采用sigma点粒子滤波产生拟合概率密度函数的加权粒子,并通过观测值对加权粒子进行更新;修正过程采用迭代卡尔曼滤波优化预测阶段得到的描述状态分布的均值和方差。
3) unscented Kalman filter
采样卡尔曼滤波
1.
To solve the problem of the instability,low accuracy of passive filter in Cartesian coordinate,and the strong nonlinearity in modified polar coordinate,the unscented Kalman filter is applied in the passive underwater target tracking in modified polar coordinate.
针对水下被动目标跟踪问题中,采用直角坐标系容易出现滤波发散,而修正极坐标系下过程模型强非线性的问题,研究了一种修正极坐标系下的采样卡尔曼滤波算法。
2.
For the problem that the extended Kalman filter(EKF) is difficult to design and prone to diverge,the unscented Kalman filter(UKF) algorithm based method is presented to solve the problems of the filter design and convergence.
针对扩展卡尔曼滤波器(EKF)设计困难并且容易发散的问题,提出基于采样卡尔曼滤波(UKF)的方法解决滤波器设计及收敛问题,并补偿低成本的惯性传感器陀螺仪和加速度计的误差,从而得到机器人姿态的最优估计。
3.
An initial alignment method for low-cost SINS is proposed,which uses nonlinear error model and the unscented Kalman filter(UKF).
提出适用于低成本捷联惯导系统的初始对准方法,即采用非线性对准模型和采样卡尔曼滤波(Unscented Kalman Filter)进行状态估计。
4) iterated extended Kalman filter
迭代扩展卡尔曼滤波器
5) Iterative Kalman Filter-Smoother
卡尔曼滤波平滑迭代
6) Iterative Kalman smoother
迭代卡尔曼滤波平滑
补充资料:迭代
迭代
iterate
迭代【ite口te;.什pa”11。] 重复应用某种数学运算的结果.这样,如果 y=f(x)三f,(x)是x的函数,则函数 fZ(x)=f[f;(x)」,…,f。(x)=f【f。一:(x)』顺次称为f(x)的二次,…,n次迭代(j记m记).例如,令f(x)=x‘,就得到 fZ(x)=(x“)一x·,, f。(x)=(x‘’一’)“=x““.指标”称为迭代的拳攀(Cxponent),而从f(‘)转移到fZ(x),f,(x),…也称为迭代(ite瑙如n).可以对某种函数类定义具有任意实指数甚至复指数的迭代.迭代用于通过迭代方法求解各种方程或方程组.详见序列逼近法(seq谬ntialappro劝na石on,兹心山记of).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条