1) Pre-extracting Support Vector
预抽取支持向量
1.
First of all, Pre-extracting Support Vector was used to reduce not only the number of the training samples, but also the training time.
首先,预抽取支持向量以减少训练样本数量,大大缩减训练时间;然后,用缩减后的样本对改进后的分类支持向量机进行货币识别,改进后的支持向量机不仅把目标函数惩罚项模糊化,而且还对分类情况进行了加权补偿。
2) take out support vectors in advance
预抽取支持向量机
3) support vectors pre-extraction
支持向量预提取
5) support vector machines
支持向量
1.
Application of support vector machines in examination of worn striation mark;
支持向量机方法在线条痕迹检验中的应用
6) Support vector
支持向量
1.
Modeling method of least squares support vector regression based on vector base learning;
基于矢量基学习的最小二乘支持向量机建模
2.
Lower dimension Newton-algorithm for training the support vector machines;
训练支持向量机的低维Newton算法
3.
A fast algorithm for extracting the support vector on the Mahalanobis distance;
一种基于马氏距离的支持向量快速提取算法
补充资料:支持向量机方法
支持向量机(SVM)是90年代中期发展起来的基于统计学习理论的一种机器学习方法,通过寻求结构化风险最小来提高学习机泛化能力,实现经验风险和置信范围的最小化,从而达到在统计样本量较少的情况下,亦能获得良好统计规律的目的。支持向量机算法是一个凸二次优化问题,能够保证找到的极值解就是全局最优解,是神经网络领域域取得的一项重大突破。与神经网络相比,它的优点是训练算法中不存在局部极小值问题,可以自动设计模型复杂度(例如隐层节点数),不存在维数灾难问题,泛化能力强。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条