1) Hopf bifurcation point
Hopf分岔点
1.
In this paper a new approach is proposed to solve Hopf bifurcation point of dynamic voltage stability by reduced order,and the feature of the proposed approach is to reduce the order of a (3n+2)-dimensional Newton iterative equations to a (n+2)-dimensional linear equations.
对于一个n维电力系统,若用直接法求解Hopf分岔点,需要解1个3n+2维的方程组,计算量大,易陷入维数灾。
3) Hopf-Hopf-Flip bifurcation
Hopf-Hopf-Flip分岔
1.
Local behaviors of the system,near the point of Hopf-Hopf-Flip bifurcation,are studied,where Hopf bifurcation occurs,as well as Flip bifurcation,torus bifurcation and "pentagram" attractor in projected Poincaré sections.
研究了其Jacobian矩阵两对复共轭特征值和一负实特征值同时穿越单位圆情况下的Hopf-Hopf-Flip分岔,该系统在此类余维三分岔点附近存在周期运动的Hopf分岔、Flip分岔、环面分岔以及"五角星形"概周期吸引子,揭示了环面倍化以及分形出"五角星形"概周期吸引子并向混沌演化的两种非常规过程,它对于振动筛系统的动力学优化设计提供了理论参考。
4) HOPF bifurcation
HOPF分岔
1.
Moore-spence extended equations based reduction new method for computing Hopf bifurcation points of power system;
基于Moore-Spence扩展方程电力系统Hopf分岔点的降阶新算法
2.
Hopf bifurcation analysis of hydraulic turbine governing systems with elastic water hammer effect;
考虑弹性水击效应时水轮机调节系统的Hopf分岔分析
3.
Stability and Hopf bifurcation analysis of axially narrow-band random oscillating flexible beams;
轴向基础窄带随机激励柔性梁的稳定性与Hopf分岔
5) double Hopf bifurcation
双Hopf分岔
1.
The resonant double Hopf bifurcations and the nonresonant ones exist due to the technological delay τ_1.
发现由于技术时滞τ1的出现,使模型存在着共振和非共振的双Hopf分岔。
2.
The dynamic behavior of a resonant double Hopf bifurcation is examined for a van der Pol-Duffing oscillator with delayed feedback,and the influence on double Hopf bifurcation is investigated with time delay and amplitude variation.
研究时滞反馈van der Pol-Duffing系统的共振双Hopf分岔,讨论时滞量和位移反馈增益变化对双Hopf分岔的影响。
3.
It is found that the excitatory self-connections can lead to non-resonant double Hopf bifurcations since the double Hopf bifurcation disappears without self delayed connecti.
发现如果有兴奋型自连接就会有双Hopf分岔,而没有时滞自连接时双Hopf分岔就会消失,因此自连接引起了双Hopf分岔。
6) Hopf-Flip bifurcation
Hopf-Flip分岔
1.
Hopf-Flip bifurcations of a two-degree-of-freedom mechanical system with periodic coefficients;
一类周期系数力学系统的Hopf-Flip分岔
补充资料:[3-(aminosulfonyl)-4-chloro-N-(2.3-dihydro-2-methyl-1H-indol-1-yl)benzamide]
分子式:C16H16ClN3O3S
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条