1) policy-gradient approach
策略梯度优化算法
1.
A POMDP(partially observable Markov decision process)-based admission control model was proposed for distributed VOD admission control system,and the optimal admission policy was obtained by applying the policy-gradient approach through computer simulation.
为分布式视频点播(video on demand,VOD)接入控制建立了基于POMDP(部分可观Markov决策过程)的数学模型,应用策略梯度优化算法仿真求解模型的最优策略。
2) policy-gradient algorithm
策略梯度算法
1.
On the basis of partially observable Markov decision processes,two finite-memory policy-gradient algorithms,that is,model-based GAMP algorithm and model-free IState-GPOMDP algorithm,were implemented,and employed in the simulation of a robot walking in a maze.
通过分析仿真结果,对这两种算法引入了基于观测的优化;并发现在所给报酬函数下,策略梯度算法中的步长参数也在一定程度上影响着优化策略的效率。
3) gradient optimal method
梯度优化算法
4) Subgradeint Algorithm
次梯度优化算法
5) gradient optimization algorithm
梯度最优化算法
6) conjugated gradient optimum algorithm
共轭梯度优化算法
1.
This paper com bines conventional BP neural network with conjugated gradient optimum algorithm to optimize the calculations of network w.
用BP神经网络分析评判管道的腐蚀类型,可以避开寻找各种因素对腐蚀类型影响规律的难题,方便准确地分析评判出管道的腐蚀类型,但是传统的BP神经网络存在收敛速度较慢和容易陷入局部极小点两个问题,为此文章提出了将传统的BP神经网络与共轭梯度优化算法相结合,以优化网络权值和阈值的计算,同时确定了相应的计算方法。
补充资料:BP算法
分子式:
CAS号:
性质:又称逆推学习算法,简称BP算法,是1986年鲁梅哈特(D. E. Rumelhart)和麦克莱朗德(J. L. McClelland)提出来的。用样本数据训练人工神经网络(一种模仿人脑的信息处理系统),它自动地将实际输出值和期望值进行比较,得到误差信号,再根据误差信号从后(输出层)向前(输入层)逐层反传,调节各神经层神经元之间的连接权重,直至误差减至满足要求为止。反向传播算法的主要特征是中间层能对输出层反传过来的误差进行学习。这种算法不能保证训练期间实现全局误差最小,但可以实现局部误差最小。BP算法在图像处理、语音处理、优化等领域得到应用。
CAS号:
性质:又称逆推学习算法,简称BP算法,是1986年鲁梅哈特(D. E. Rumelhart)和麦克莱朗德(J. L. McClelland)提出来的。用样本数据训练人工神经网络(一种模仿人脑的信息处理系统),它自动地将实际输出值和期望值进行比较,得到误差信号,再根据误差信号从后(输出层)向前(输入层)逐层反传,调节各神经层神经元之间的连接权重,直至误差减至满足要求为止。反向传播算法的主要特征是中间层能对输出层反传过来的误差进行学习。这种算法不能保证训练期间实现全局误差最小,但可以实现局部误差最小。BP算法在图像处理、语音处理、优化等领域得到应用。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条