1) coset partition
陪集分割
1.
The algorithm aims at Gaussian sources,implements with LDPC,and is based on the coset partition principle.
该算法针对高斯信源,基于陪集分割原理,采用LDPC实现。
2) cyclotomic coset
分圆陪集
1.
For givenτ andη ,a method which decidesλ to satisfy trinomial is proposed, the acquisition of all trinomials of a m-sequence only depends on the reciprocal polynomial of the primitive polynomial which produces the m-sequence and the cyclotomic cosets mod pn-1.
无需给出 m序列,只需通过产生 m序列的本原多项式的互反多项式以及关于模 pn-1的分圆陪集就可以获得全部序列三项式。
3) cyclotomic cosets
分圆陪集
1.
Applicable qualification of calculating the correlation function of m sequence based on cyclotomic cosets;
基于分圆陪集法求解m序列相关特性的适用条件
2.
This paper presents the new formula for computing the number of the leader-set of cyclotomic cosets.
本文给出了求分圆陪集首集中元素个数新的计算公式,确定了长度为k的分圆陪集的个数。
3.
The details are given as follow: (1) The calculating formulas of cyclotomic cosets are studied and extended.
具体内容如下: (1)研究F_(2~m)上分圆陪集的计数公式并进行了推广,给出了(s,n)=1和(s,n)=s情况下C_s的计数公式; (2)根据BCH码的特点,利用M(?)bius反转公式,给出了论文所设计的BCH码族及其对偶码族的周期分布; (3)引入函数△(n)=(?)u(r)2~(n/r),通过M(?)bius反转公式给出了论文所设计的BCH码族的非循环等价类计数公式; (4)设计实现了参数为[31,11,d]_2(d≥11)的BCH码的B-M迭代译码算法。
4) 2-cyclotomic coset
2-分圆陪集
5) double coset decomposition
双陪集分解
1.
Cauchy s theorem and Sylow s theorems for finite groups are proved by means of the double coset decompositions and some basic enumeration techniques.
从Cauchy定理的证明出发,用双陪集分解以及初等的计数技巧归纳地证明了Sylow定理及其Frobenius型推广。
6) coset
[英]['kəuset] [美]['kosɛt]
陪集
1.
A Coset Searching Algorithm Based on Quantum Low-density-parity-check Codes;
一种基于量子低密度奇偶校验码的陪集搜索算法
2.
High-dimensional affine codes were constructed using weak block designs, where the s-dimensional coset of s-dimensional affine geometry G(m,p) over a finite field F_p was taken as an informational bit, and every s-dimensional coset family corresponding each element was regarded as a check line.
利用弱区组设计的方法,以Fp上的m维仿射几何G(m,p)的s维陪集为信息位,将每个元素对应的s维陪集族作为监督维线,构造了高维仿射码,并且分析了该码的码长、维数、极小码距和码率。
3.
With regard to the section of coset in algebraic structure, a series of well-mastered concepts including equivalent relationship and division are applied, and typical examples are cited to introduce the conception of equivalent relationship-coset relationship defined through subgroup.
对于其中代数结构部分的陪集一节,应用已经熟知的等价关系和划分的概念,通过引例导出由子群定义的等价关系———陪集关系,进而得到群的划分———陪集,再研究陪集的性质。
补充资料:陪集
陪集
coset
陪集[~t;eMe袱u。盛翻aeel,子群11在群G中的(左) G中形式为 aH二笼ah:h任H}的元素的集合,其中a是G的一个固定元素.这个陪集也称为11在G中由a确定的左陪集.每个左陪集由它的任一元素决定.aH=H当且仅当a任H.对所有a,b‘G,陪集aH和bH或相等或无交.于是,G可分解成H的互不相交的左陪集的并集;这个分解称为G对于H的车分解(leftde~娜ition).类似地,可定义右陪集( right姗ets)(是集合Ha,a任G)和G对H的有兮解(righ‘decom卿ition)·这些分解由相同个数的陪集组成(在无限的情形,它们有相等的势).这个数(势)称为子群H在G中的指数(index of thesubgrouP).对于正规子群,左分解和右分解重合,这时可简单地称群对于平规矛群的分解(decom娜itionof”norlnal group).0.入H般Hosa撰[补注]也见正规子群(non力a】subgrouP).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条