1) computational bilinear Diffie-Hellman problem
计算双线性Diffie-Hellman问题
2) Bilinear Diffie-Hellman problem
双线性Diffie-Hellman问题
1.
Based on the study of some based-pairing cryptosystem,we can find them must resolve the following questions:(1)Decide whether Bilinear Diffie-Hellman Problem is realy a hard question or not;(2)Find more efficient arithmitric to compute bilinear pairing;(3)Propose more secure,efficient and special signature schemes,such as.
在研究各种基于配对的密码体制的基础上,认为基于配对的密码体制要想得到广泛的实际应用,必须解决下列问题:(1)必须对双线性Diffie-Hellman问题进一步研究,判断其是否为一困难问题。
2.
The scheme is proved to be secure under the hardness of elliptic curve discrete logarithm problem and bilinear Diffie-Hellman problem.
在椭圆曲线离散对数问题和双线性Diffie-Hellman问题的难解性下,该方案被证明是安全的。
3) Decisional bilinear Diffie-Hellman problem
决定性双线性Diffie-Hellman问题
4) computational diffie-hellman problem
计算Diffie-Hellman问题
1.
The security of the scheme is based on the fact that computational Diffie-Hellman problem is hard.
分析显示该方案满足环签名的各种安全性要求,它的安全性基于计算Diffie-Hellman问题的困难性,可广泛地应用于电子选举、电子拍卖等方面。
2.
It is proved secure in the random oracle models with the assumption that the computational Diffie-Hellman problem is infeasible.
它的安全性建立在计算Diffie-Hellman问题的困难性之上。
3.
A new and efficient signature scheme is proposed,and its security is reduced to computational Diffie-Hellman problem without using forking reduction tech-nology.
提出了一个新的、有效的签名方案,并在安全证明不使用分叉归约技术的情况下将它的安全性归约到计算Diffie-Hellman问题的安全性。
5) Diffie-Hellman problem
Diffie-Hellman问题
6) Decisional Diffie-Hellman Problem's Hardness
Diffie-Hellman判定性问题
补充资料:计算
①根据已知数通过数学方法求得未知数:~人数 ㄧ~产值。②考虑;筹划:做事没个~,干到哪儿算哪儿。③暗中谋划损害别人:当心被小人~。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条