1) DDR2 SDRAM module controller
DDR2内存条控制器
2) DDR2 Memory Controller
DDR2内存控制器
1.
The Research and Implementation on DDR2 Memory Controller with High Bandwidth and Low Latency;
高带宽低延时的DDR2内存控制器的研究与实现
3) DDR2 controller
DDR2控制器
1.
The principle of DDR2 controller implemented in Xilinx Spartan-3A serials FPGA and how to complete it with MIG software tools.
详细介绍了在Xilinx Spartan-3A系列FPGA中实现DDR2控制器的设计原理,介绍利用MIG软件工具实现控制器设计,并给出硬件测试结果。
2.
The DDR2 controller with the Cache of reducing writing delay of DRAM based on FPGA is designed for NSA.
本文基于FPGA实现的带有减小DRAM(Dynamic Random Access Memory)即动态随机存取存储器写延迟的Cache(高速缓冲存储器)的DDR2控制器就是为NSA所设计的,DDR2控制器的主要作用是对网络报文的读写进行控制,其内嵌的Cache主要用来消除DDR2控制器中DRAM的写延迟时间,加快系统运行速度。
4) DDR2 SDRAM controller
DDR2 SDRAM控制器
1.
This paper describes the method of realizing DDR2 SDRAM controller in the Xil-inx Spartan-3A FPGA series with MIG software tools, gives a detailed description of its basic principle and the hardware test results.
文中介绍了利用MIG软件工具在Xilinx Spartan-3A系列FPGA中实现DDR2 SDRAM控制器的设计方法,详细叙述了其基本原理,并给出了硬件测试结果。
5) memory controller
内存控制器
1.
Analyzing the key technology of memory bus and memory controller,the detail design of the memory target interface(MTI) is pro.
通过对内存总线和内存控制器关键技术的分析,给出了基于SDRAM内存总线的内存目标接口(MTI)设计,在功能和逻辑上实现了内存总线和局部总线间的桥接,为基于内存总线的应用设计提供了一种功能完备的接口部件。
6) Open-Page memory controller
Open-Page内存控制器
补充资料:DDR2
此外,由于DDR2标准规定所有DDR2内存均采用FBGA封装形式,而不同于目前广泛应用的TSOP/TSOP-II封装形式,FBGA封装可以提供了更为良好的电气性能与散热性,为DDR2内存的稳定工作与未来频率的发展提供了坚实的基础。回想起DDR的发展历程,从第一代应用到个人电脑的DDR200经过DDR266、DDR333到今天的双通道DDR400技术,第一代DDR的发展也走到了技术的极限,已经很难通过常规办法提高内存的工作速度;随着Intel最新处理器技术的发展,前端总线对内存带宽的要求是越来越高,拥有更高更稳定运行频率的DDR2内存将是大势所趋。
DDR2与DDR的区别:
1、延迟问题:
从上表可以看出,在同等核心频率下,DDR2的实际工作频率是DDR的两倍。这得益于DDR2内存拥有两倍于标准DDR内存的4BIT预读取能力。换句话说,虽然DDR2和DDR一样,都采用了在时钟的上升延和下降延同时进行数据传输的基本方式,但DDR2拥有两倍于DDR的预读取系统命令数据的能力。也就是说,在同样100MHz的工作频率下,DDR的实际频率为200MHz,而DDR2则可以达到400MHz。
这样也就出现了另一个问题:在同等工作频率的DDR和DDR2内存中,后者的内存延时要慢于前者。举例来说,DDR200和DDR2-400具有相同的延迟,而后者具有高一倍的带宽。实际上,DDR2-400和DDR400具有相同的带宽,它们都是3.2GB/s,但是DDR400的核心工作频率是200MHz,而DDR2-400的核心工作频率是100MHz,也就是说DDR2-400的延迟要高于DDR400。
2、封装和发热量:
DDR2内存技术最大的突破点其实不在于用户们所认为的两倍于DDR的传输能力,而是在采用更低发热量、更低功耗的情况下,DDR2可以获得更快的频率提升,突破标准DDR的400MHZ限制。
DDR内存通常采用TSOP芯片封装形式,这种封装形式可以很好的工作在200MHz上,当频率更高时,它过长的管脚就会产生很高的阻抗和寄生电容,这会影响它的稳定性和频率提升的难度。这也就是DDR的核心频率很难突破275MHZ的原因。而DDR2内存均采用FBGA封装形式。不同于目前广泛应用的TSOP封装形式,FBGA封装提供了更好的电气性能与散热性,为DDR2内存的稳定工作与未来频率的发展提供了良好的保障。
DDR2内存采用1.8V电压,相对于DDR标准的2.5V,降低了不少,从而提供了明显的更小的功耗与更小的发热量,这一点的变化是意义重大的。
DDR2采用的新技术:
除了以上所说的区别外,DDR2还引入了三项新的技术,它们是OCD、ODT和PostCAS。
OCD(Off-ChipDriver):也就是所谓的离线驱动调整,DDRII通过OCD可以提高信号的完整性。DDRII通过调整上拉(pull-up)/下拉(pull-down)的电阻值使两者电压相等。使用OCD通过减少DQ-DQS的倾斜来提高信号的完整性;通过控制电压来提高信号品质。
ODT:ODT是内建核心的终结电阻器。我们知道使用DDRSDRAM的主板上面为了防止数据线终端反射信号需要大量的终结电阻。它大大增加了主板的制造成本。实际上,不同的内存模组对终结电路的要求是不一样的,终结电阻的大小决定了数据线的信号比和反射率,终结电阻小则数据线信号反射低但是信噪比也较低;终结电阻高,则数据线的信噪比高,但是信号反射也会增加。因此主板上的终结电阻并不能非常好的匹配内存模组,还会在一定程度上影响信号品质。DDR2可以根据自己的特点内建合适的终结电阻,这样可以保证最佳的信号波形。使用DDR2不但可以降低主板成本,还得到了最佳的信号品质,这是DDR不能比拟的。
PostCAS:它是为了提高DDRII内存的利用效率而设定的。在PostCAS操作中,CAS信号(读写/命令)能够被插到RAS信号后面的一个时钟周期,CAS命令可以在附加延迟(AdditiveLatency)后面保持有效。原来的tRCD(RAS到CAS和延迟)被AL(AdditiveLatency)所取代,AL可以在0,1,2,3,4中进行设置。由于CAS信号放在了RAS信号后面一个时钟周期,因此ACT和CAS信号永远也不会产生碰撞冲突。
总的来说,DDR2采用了诸多的新技术,改善了DDR的诸多不足,虽然它目前有成本高、延迟慢能诸多不足,但相信随着技术的不断提高和完善,这些问题终将得到解决。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条