说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 混相状态
1)  miscible state
混相状态
1.
In order to probe into the flow mechanism of CO 2 in miscible state,a high temperature and high pressure 3-D device was used to study miscible flooding of CO 2 and oil.
为认识混相状态的CO2在油藏中的渗流特征,利用高温高压三维模拟装置对CO2-地层原油体系在油藏环境条件下的混相驱替过程进行研究。
2)  promiscuous condition
混杂状态
3)  chaotic state
混沌状态
1.
Meanwhile,the ceharacteristics of the chaotic state of the base pairs in DNAhave been also discussed.
研究了DNA生物大分子在ATP水解作用所提供的能量或外部场作用下所产生的构象畸变和局域性涨落的特点,研究了碱基在此情况下运动的混沌状态的性质。
4)  hybrid slate
混合状态
5)  predicament of confusion
混乱状态
6)  Adjacent state
相邻状态
1.
By simulated annealing method,this paper provides a principal for determining perfect adjacent state.
针对具体实例,给出了相邻状态、迭代长度以及各阶段温度的确定原则。
2.
Akind of function is to produce adjacent states.
针对一类非线性规划问题 ,将模拟退火算法进行了改进 ,提出了一种相邻状态的产生函数 ,为研究非线性规划提供了新的有效求解途径。
3.
According to the property of the continuous variable prob-lem,a function of producing adjacent state is proposed ,and effects of initial temperature,terminal temperatnre as well as annealing schedule to the opti-mal calcuation are analysed,and their suitable scopes are given.
文中根据连续变量问题的特性,提出了一种相邻状态的产生函数和迭代方案,并分析了模拟退火过程的起始温度、终止温度以及降温速度等参数对优化计算的影响,给出了这些参数的适宜区域,通过三个例题的计算,将模拟退火法与传统优化方法一梯度法进行了对比分析,结果表明该法能够有效地解决传统的确定型优化方法所不能奏效的全局优化问题。
补充资料:应力状态和应变状态
      构件在受力时将同时产生应力与应变。构件内的应力不仅与点的位置有关,而且与截面的方位有关,应力状态理论是研究指定点处的方位不同截面上的应力之间的关系。应变状态理论则研究指定点处的不同方向的应变之间的关系。应力状态理论是强度计算的基础,而应变状态理论是实验分析的基础。
  
  应力状态  如果已经确定了一点的三个相互垂直面上的应力,则该点处的应力状态即完全确定。因此在表达一点处的应力状态时,为方便起见,常将"点"视为边长为无穷小的正六面体,即所谓单元体,并且认为其各面上的应力均匀分布,平行面上的应力相等。单元体在最复杂的应力状态下的一般表达式如图1,诸面上共有9个应力分量。可以证明,无论一点处的应力状态如何复杂,最终都可用剪应力为零的三对相互垂直面上的正应力,即主应力表示。当三个正应力均不为零时,称该点处于三向应力状态。若只有两对面上的主应力不等于零,则称为二向应力状态或平面应力状态。若只有一对面上的主应力不为零,则称为单向应力状态。
  
  
  应力圆  是分析应力状态的图解法。在已知一点处相互垂直的待定截面上应力的情况下,通过应力圆可求得该点处其他截面上的应力。应力圆也称莫尔圆。图2b即为图2a所示平面应力状态下表示垂直于xx平面的面上之应力与x、x截面上已知应力间关系的应力圆。利用它可求得:①任意 α面上的应力;②"最大"和"最小"正应力;③"最大"和"最小"剪应力。由应力圆上代表"最大"和"最小"正应力的A、B点可知,这些正应力所在截面上的剪应力为零,因而"最大"和"最小"正应力也就是该点处的主应力。
  
  
  应变圆  也称应变莫尔圆,是分析应变状态的图解法,其原理与应力圆类似,但应变圆的纵坐标为负剪应变的一半,横坐标为线应变 ε。在已知一点处的线应变εx、εy与剪应变γxy时,即可作出应变圆,从而求得该点处主应变 ε1与ε2的大小及其方向。在实验分析的测试中常用各种形状的应变花测量(见材料力学实验)一点处三个方向的应变,例如用"直角"应变花可测得一点处的线应变ε、ε45°、ε90°。根据一点处三个方向的线应变也可利用应变圆求得该点处的主应变ε1与ε2
  
  广义胡克定律  当按材料在线弹性范围内工作时,一点处的应力状态与应变状态之间的关系由广义胡克定律表达。对于各向同性材料,弹性模量E、剪切弹性模量G、泊松比v均与方向无关,且线应变只与正应力σ有关,剪应变只与剪应力τ有关。三向应力状态下,各向同性材料的广义胡克定律为
  
  
  
  
  
  
  
  
  
  
  
  
   τxy=Gγxy
  
  
  
   τyz=Gγyz
  
  
  
   τzx=Gγzx平面应力状态(σz=0, τyz=0, γzx=0)下的广义胡克定律应用最为普遍
  
  
  
   单向应力状态下的胡克定律则为σ=Eε。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条