1) differential coefficient approximation
导数逼近法
1.
In order to solve the problem of parameter setting during the design of a software phase-locked loop(SPLL) is designed,the Z domain mathematical model by the way of differential coefficient approximation is built and the influences of the parameters\' changes to the magnitude frequency responses of both the whole loop and loop filter which is one portion of PLL are studied.
为了解决软件锁相环设计时遇到的参数设置问题,通过导数逼近法给出了软件锁相环的Z域数学模型,并研究了参数变化对环路滤波器幅频响应及闭环幅频响应的影响,从而得到阻尼系数、系统增益、采样率与系统性能之间的关系,为实际设计软件锁相环时参数的设置提供了理论依据和参考。
2) derivative approximation
导数逼近
1.
The derivative approximation of modified Hermite interpolation on the weighted Lp norm
修改的Hermite插值算子在加权L_p范数下的导数逼近
2.
Mean convergence of derivative approximation by quasi-Hermite interpolation operators
拟Hermite插值算子导数逼近的平均收敛性
3.
In this paper, we mainly consider the derivative approximation of continuous differentiable functions by the Hermite interpolation which is based on the zeros of the Chebyshev polynomials of the first kind.
本文主要讨论了以第一类Chebyshev多项式的零点为插值结点组的Hermite插值算子在加权平均范数意义下的导数逼近问题,同时给出了一种基于第二类Chebyshev多项式零点的拟Hermite插值算子,并讨论了其逼近导数的平均收敛性。
3) functional approaching
函数逼近法
1.
This paper introduces the method of functional approaching method analysis of the four-combined-poll installation in order to approximately achieve the given curve lines.
本文用函数逼近法综合铰链四杆机构,使其近似实现给定的连杆曲线。
4) Numerical approach method
数值逼近法
1.
Firstly, a numerical approach method is used in the optimal reliability design with arbitrary distribution parameters, where the probabilistic constraints can be transformed into deterministic constraints, and the reliability optimal design parameters are obtained accurately and quickly.
结合随机摄动技术和随机模拟方法,提出了可靠性优化设计的一种数值逼近法,将服从任意分布的可靠性概率约束等价转化为确定型约束,可以迅速准确地获得优化设计结果。
5) fractional approach
分数逼近法
1.
According to this method,fractional approach for π and SANFEN SUNYI Tuning System research are developed.
任何一个多位小数可以用一个分数来近似表示,即采用多位小数的分数逼近法,按一定的程序,可使误差越来越小,直至达到所需的精确度。
6) mathematical approximation
数值近似(逼近)法
补充资料:delaVallée-Poussin导数
delaVallée-Poussin导数
de la VaDce - Poussin derivative
山hV团倪一P加石幽1.导数【de hVa肠纯一R版动l心由.dve;Ba服ny伙ella甲山即口.1,广义对称导数(罗nerali-欲互s脚四netric deriVa石ve) 由Ch.J.de h vall能一Poussin(【11)定义的一种导数.设r为偶数,并设存在占>O使对满足}t}<占的一切t,有 合{f(x。+‘,+f(x。一艺,,- 一刀。+冬:,口2+…+弄。r且+:(:):r,(*) 2一r名r!一rr‘、一,一,其中声:,…,戊为常数,下(t)~o(当t~O)且下(o)=0.数尽”f(r)(x0)称为函数f在点x。的:阶dehvallee-Poussin导数或;阶对称导数. 奇阶r的dehV么11阮一Po璐in导数可类似定义,只要把方程(*)代之为 冬仃(、+‘)一了(、一:)}- 2 一。。1十冬‘,。、十…十共:r坟十:(:):: 3!一厂Jr!一r”‘、一z一’ deh从山阮一Poussin导数左,帆)与R~nn二阶导数相同,后者常称为 Sch认么反导数.若关r)闻存在,则几一2)闻(r)2)也存在,但f(r一l)(x0)未必存在.若存在有限的通常双边导数f(r)帆),则人r)帆)二f‘r)(x0).例如,对函数f(x)二sgnx,f(川(0)=0,k=1,2,‘二,但左*+1)(。)(k=0,1,…不存在.若de h vall由一Po.in导数人。)(x0)存在,则由f的Fo~级数逐项微分r次所得级数S‘r)(f)在x。对于“>r是(C,的可和的,其和为寿)帆)([2〕)(见C威的求和法(。滋ms~·tion methods)).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条