说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 时域特征扩展
1)  time-domain feature expansion
时域特征扩展
1.
The two different ways based on the time-domain feature expansion and the orthogonal decomposition feature expansion are used to establish process neural networks model.
采用基于时域特征扩展和基于正交分解特征扩展两种方式建立过程神经元网络模型,利用电力负荷数据进行网络训练和负荷预测。
2)  feature expansion
特征扩展
1.
Two theorems are presented and proved in this paper,giving two models for approaching corresponding process neurons:the time-domain feature expansion model and .
文中给出2个定理及其详细证明,分别论述了过程神经元的2种传统神经元逼近模型:时域特征扩展模型和正交分解特征扩展模型。
3)  time spread
时域扩展
1.
Research on time spread echo hiding for audio watermarking;
基于时域扩展回声隐藏的数字音频水印研究
4)  time domain characteristics
时域特征
1.
The results shows that different sound types of same species have certain similar sound characteristics although there exist some difference in the frequency domain characteristics and the time domain characteristics.
对蟋蟀的 3类常见鸣声 (召唤声、求偶声、争斗声 )进行了分析比较 ,同种 3类鸣声在频域特征和时域特征上存在差异 ,但也有一些相似的特征 ;3类鸣声中 ,召唤声在分类研究上更有应用价
2.
It has mainly analyzed frequency domain characteristics and time domain characteristics of the songs.
从其频域特征和时域特征上明显地显示了种间差异,并将其鸣声特征用于分类。
3.
Analyze the correlation between time domain characteristics of pulse wave and blood pressure.
方法通过高血压患者口服降压药;健康个体运动改变血压,在相同时间间隔内,采集血压以及对应时刻的脉搏波,分析脉搏波时域特征参数与血压之间的相关性。
5)  temporal scalability
时域可扩展
1.
Error resilience and temporal scalability for video transmissions using multiple reference prediction chain coding;
多参考预测链的时域可扩展性和抗错性
6)  method of time domain characteristics
时域特征法
1.
Based on the decouping of lossy coupled transmission lines and the method of time domain characteristics of a single line, this paper presented a new method for sensitivity analysis of lossy lines in the time domain.
讨论了有耗耦合传输线系统的去耦过程 ,在此基础上结合单根线灵敏度分析的时域特征法提出了一种对有耗线进行灵敏度分析的新方法 。
补充资料:偏微分算子的特征值与特征函数
      由边界固定的膜振动引出的拉普拉斯算子的特征值问题:是一个典型的偏微分算子的特征值问题,这里x=(x1,x2);Ω是膜所占据的平面区域。使得问题有非平凡解(非零解)的参数λ的值,称为特征值;相应的解称为特征函数。当Ω有界且边界嬠Ω满足一定的正则条件时,存在可数无穷个特征值,相应的特征函数ψn(x)组成l2(Ω)上的完备正交系。乘以常因子来规范ψn(x),使其l2(Ω)模为1,则Ω上的任意函数??(x)的特征展式可写为:当??可以"源形表达",即??满足边界条件且Δ??平方可积时,展式在Ω一致收敛。当??平方可积时,展式平方平均收敛,且有帕舍伐尔公式:
  
  
  对膜振动问题的认识还是相当有限的。能够精确地知道特征值的,只限于矩形、圆盘等少数几种非常简单的区域。对椭圆和一般三角形的特征值精确值,还几乎毫无所知。其他情形就更谈不上了。
  
  将不超过 λ的特征值的个数记为N(λ)。特征值的渐近分布由N(λ)对大 λ的渐近式来刻画。这方面最早的结果是(C.H.)H.外尔在1911年得到的(外尔公式):
  式中表示Ω的面积。R.库朗将余项改进为。对于多角形区域,又有人将余项改进到。各种情况下改进余项估计的工作至今绵延不绝。外尔猜测有一个更强的结果:式中|嬠Ω|是区域边界之长,但尚未被证出。
  
  与此密切相关的是下面的MP公式:(t→+0)
  取一个渐近项时,用陶伯型定理可由它推出N(λ)的外尔公式。第二渐近项与外尔猜想非常相象,但由此证不出外尔猜想。第三项迟至1966年才被M.卡茨导出,后来由H.P.麦基恩与I.M.辛格严格证明,其中h表示鼓膜Ω的洞数。
  
  特征值与膜振动频率有一个直接的换算关系,M.卡茨据此给MP公式一个非常生动的解释:可以"听出"鼓膜的面积|Ω|、周长|嬠Ω|和洞的个数h!由于1-h恰巧是Ω的欧拉-庞加莱示性数,是整体几何中颇受重视的一个不变量,"听出鼓形"或"谱的几何"问题立即引起人们的强烈兴趣,并导致一系列重要的研究。不过一般的特征值反问题,要求从特征值的谱完全恢复Ω,还远远没有解决。
  
  用陶伯型定理得出N(λ)渐近式的方法,由T.卡莱曼于1934年首创,他还得到谱函数的渐近式:(λ→∞),式中δxy当x=y时为1,当x≠y时为0。
  
  上述关于拉普拉斯算子的结果,由L.戈尔丁和F.E.布劳德推广到 Rn的有界区域Ω上的m 阶椭圆算子。尽管推算繁杂,但结果十分简单整齐:;;式中 v(x) 表示集合{ξ||A0(x,ξ)|<1}的勒贝格测度,而是A的最高阶导数项相应的特征形式。特征展开定理亦由L.戈尔丁得出。
  
  对于奇异情形,例如薛定谔方程 的谱问题,可以证明存在谱函数S(x,y,λ),特征展式为。由于可能出现连续谱,S(x,y,λ)一般不一定能写成前述特征函数双线和的形式。判定奇(异)微分算子谱的离散性是很有意义的工作。已经出现各种充分条件。不过关于特征值与特征函数渐近性质的研究,还只是限于少数特例。
  
  在处理‖x‖→∞ 时V(x)→∞的情形,M.卡茨与D.雷等人曾创造了一种系统的概率方法,其中借助数学期望表出格林函数,有效地求出谱函数与特征值的渐近式:
  。
  
  当算子A的系数不光滑,或非一致椭圆,或非自共轭,以及边条件带特征参数或带非定域项等等情形,都出现不少研究结果。还有人考察Au=λBu型的特征值问题,这里A、B都是椭圆算子。
  
  除上述问题外,特征展式的收敛性与求和法也一直受到人们的关注。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条