说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 单值化分析
1)  uniformization analysis
单值化分析
2)  single-valued analytic branch
单值解析分枝
3)  branch of analytic function
单值解析分支
1.
For the radical function f(z)=n[]p(z)(where p(z) is a polynomial of degree N) with multi-branch points,this paper obtains a general method to get the function value on the given branch of analytic function.
对于具有多个有限支点的根式函数f(z)=np(z)(其中p(z)是任意的N次多项式),得到了求某个特定单值解析分支上的函数值的一般方法。
4)  numerical simulation and optimization
数值分析与优化
5)  Single objective analyses
单目标化分析
6)  uniformizationn of analytic function
解析函数的单值化
补充资料:单值化


单值化
uniforniization

单值化【妞‘肠rn血a‘on;yH“中叩MH3au“,」集合A〔CN(或A C= CPN)的 三元组(f,D,G),这里厂=(fl,…,f、)是区域DCCN(相应地,DCC尸刀)内亚纯函数系,定义了一个全纯覆叠(covering)D。一f(D。,),使f(DO)在A内稠密,G是D的双全纯自同构的真不连续群,G限制于D。是这个覆叠的覆叠同胚群,即D。/G双全纯等价于f(D。), 因此可以讨论多值解析函数w=F(习二C”一C‘”的单值化(山1而rm达ltionofmultj一刘uedanal殉几nc·tions),把它理解为集A={(:,、、)}的单值化,这对应于把F用单值亚纯函数作参数化. 例如C’中的复曲线:’+、、’=1可用三元组((:,*),C,G)作单值化,这里:=cost,w=sint,G是平移群t~t十2 k7T,k 62,或用三元组((:,w),D,G)作单值化,这里 (l一rZ、Zt 艺=一.W一— (l+t‘)’(l+t‘)’ D=C\{i,一i},G是平凡群.一个不那么平凡的例子是三次曲线、、2二a。z’十a、:’十“2:十a。,它没有有理参数化,但可以用椭圆函数(曲ptic function)作单值化,即有三元组((f,,fZ),D,G),这里f、和fZ是周期为。l和。2的WeierstrassL尹函数及其导函数的有理函数,G是由平移t一t十田,,t一t+田2生成的群. 在19世纪上半叶就己经提出了由一般代数方程 p‘万,“,一只a,*二”“一“,‘·,这里P是C上不可约代数多项式,所定义的任意代数曲线(a】罗boic curve)的单值化问题,特别是与代数函数的积分相联系.H.Poincar6提出了形如(*)式的任意解析方程的解集的单值化问题,这里的尸是两个变量的收敛幂级数,并考虑所有可能的解析延拓.代数簇与任意解析簇的单值化构成了H皿bert第二十二问题(Hilbert twenty一seeond prob】em).到目前为止(1992)还没有得到单值化问题的完全的解,只有一维的情形是例外. 在CZ内满足(。)的二元组(:,w)的集合上利用相应的代数函数w(:)(或:(w))的元素可以引进一个复拓扑,从而得到一个紧Rien.nn曲面(Rierr以nnsul血ce);曲线(。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条