说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 复合传输线
1)  composite transmission line
复合传输线
1.
According to amplitude and phase of transmission,a composite right/left handed transmission line is fabricated based on microstrip structure,and microwave band-pass structure is constructed through controlling left handed and right-handed response frequency of the composite transmission line.
该方法从传输的幅度和相位出发,利用微带线结构构建复合左右手传输线,通过控制复合传输线的左手响应频率和右手响应频率来构建微波带通结构。
2)  multiplexing of transmission
复合传输
3)  multilayered compact right and left handed transmission line(ML CRLH TL)
多层复合左右手传输线
4)  composite right/left handed transmission line
复合左右手传输线
1.
Firstly,it is theoretically justified that the microstrip line metamaterials consisting of the composite right/left handed transmission line is of the left handed property.
首先从理论上证明了利用微带结构实现的复合左右手传输线具有异向介质特性,然后利用复合左右手传输线构造了具有宽带特性的异向介质。
2.
This thesis firstly introduces the composite right/left handed transmission line (CRLH-TL) with metamaterial characters into the design of feed network.
本论文首先将具有异向介质特性的复合左右手传输线(CRLH-TL)引入到天线阵列的馈电网络设计中,利用复合左右手较大相位常数特征,对传统传输线引入的插入相差进行补偿,从而在一定频率范围内,在各单元天线处实现相位平衡。
5)  ML CRLH TL
多层左右手复合传输线
6)  Composite right/left-handed transmission line
左右手复合传输线
1.
One-dimensional metamaterials were realized by using composite right/left-handed transmission lines(CRLH TLs),the transmission properties of the photonic crystals composed of metamaterials based on microstrips lines were measured and analyzed.
通过左右手复合传输线(CRLH TLs)实现了一维的特异材料(Metamaterials),基于Metamaterials单元构成了光子晶体,并分析、测试了其传输特性。
补充资料:复合材料的复合效应


复合材料的复合效应
composition effect of composite materials

复合材料的复合效应Composition effeet of Com-Posite materials复合材料特有的一种效应,包括线性效应和非线性效应两类。 线性效应包括平均效应、平行效应、相补效应和相抵效应。例如常用于估算增强体与基体在不同体积分数情况下性能的混合率,即 Pc一巧几+VmPm式中Pc为复合材料的某一性质,乃、几分别为增强体和基体的这种性质,VR、Vm则分别是两者的体积分数。这就是基于平均效应上的典型事例。另外关于相补效应和相抵效应,它们常常是共同存在的。显然,相补效应是希望得到的而相抵效应要尽可能避免,这个可通过设计来实现。 非线性效应包括乘积效应、系统效应、诱导效应和共振效应、其中有的己经被认识和利用,并为功能复合材料的设计提供了很大自由度;而有的效应则尚未被充分地认识和利用。乘积效应即已被用于设计功能复合材料。如把一种具有两种性能互相转换的功能材料X/y(如压力/磁场换能材料)和另一种Y/Z的换能材料(如磁场/电阻换能材料)复合起来,其效果是(X/D·(Y/Z)二X/Z,即变成压力/电阻换能的新材料。这样的组合可以非常广泛(见表)。系统效应的机理尚不很清楚,但在实际现象中已经发现这种效应的存在。例如交替迭层镀膜的硬度远大于原来各单一镀膜的硬度和按线性棍合率估算的数值,说明组成了复合系统才能出现的性质。诱导行为已经在很多实验中发现,同时这种效应也在复合材料的乘积效应┌──────┬──────┬──────────┐│甲相性质 │乙相性质 │复合后的乘积性质 ││ X/y │ Y/Z │沙到豹·(Y/公一义您 │├──────┼──────┼──────────┤│压磁效应 │磁阻效应 │压敏电阻效应 │├──────┼──────┼──────────┤│压磁效应 │磁电效应 │压电效应 │├──────┼──────┼──────────┤│压电效应 │场致发光效应│压力发光效应 │├──────┼──────┼──────────┤│磁致伸缩效应│压阻效应 │磁阻效应 │├──────┼──────┼──────────┤│光导效应 │电致效应 │光致伸缩 │├──────┼──────┼──────────┤│闪烁效应 │光导效应 │辐射诱导导电 │├──────┼──────┼──────────┤│热致变形效应│压敏电阻效应│热敏电阻效应 │└──────┴──────┴──────────┘复合材料界面的两侧发现,如诱导结晶或取向,但是尚未能利用这种效应来主动地设计复合材料。两个相邻的物体在一定的条件下会产生机械的或电、磁的共振,这是熟知的物理行为。复合材料是多种材料的组合,如果加以有目的性的设计,肯定可利用这种共振效应,但是目前尚未加以研究。(吴人洁)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条